Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz

3 Pharmacology and Toxicology Department, Maragheh University of Medical Sciences

4 Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz

10.33945/SAMI/ECC.2020.1.6

Abstract

Hyaluronic acid (HA) is the major constituent of the extracellular matrix (ECM) and mainly acts as a filler in the connective tissues. The goal of the current study was to develop and evaluate the physiochemical properties of HA hydrogel nanoscaffolds. Chemical precipitation technique and the use of glutaraldehyde-based crosslinking were utilized to prepare the nanoscaffolds. Dynamic light scattering (DLS), zeta sizer (measurement of zeta potential), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were performed to characterize the produced HA hydrogel nanoscaffolds. A relatively bimodal and monodispersed HA nanohydrogels were obtained and the mean particle size was reported to be 291.30 nm. In addition, the results showed that zeta potential had a negative value (-5.96 mv). The FTIR results proved the crosslinking of the constructed scaffold. The observed physiochemical specifications proposed that HA hydrogel nanoscaffolds could hold promise in different biomedical implementations in particular, tissue regeneration.

Graphical Abstract

Hyaluronic acid hydrogel nanoscaffolds: production and assessment of the physicochemical properties

Keywords

[1] A.S. Hoffman, Adv. Drug Deliv. Rev., 2012, 64, 18-23.
[2] E. Caló, V.V. Khutoryanskiy, Eur Polym J, 2015, 65, 252-267.
[3] T.R. Hoare, D.S. Kohane, Polymer, 2008, 49, 1993-2007.
[4] T. Segura, B.C. Anderson, P.H. Chung, R.E. Webber, K.R. Shull, L.D. Shea, Biomaterials, 2005, 26, 359-371.
[5] G. Tripodo, A. Trapani, M.L. Torre, G. Giammona, G. Trapani, D. Mandracchia, Eur J Pharm Biopharm, 2015, 97, 400-416.
[6] X. Xu, A.K. Jha, D.A. Harrington, M.C. Farach-Carson, X. Jia, Soft Matter, 2012, 8, 3280-3294.
[7] J. Baier Leach, K.A. Bivens, C.W. Patrick Jr, C.E. Schmidt, Biotechnol Bioeng, 2003, 82, 578-589.
[8] H. Tan, C.R. Chu, K.A. Payne, K.G. Marra, Biomaterials 2009, 30, 2499-2506.
[9] J.A. Burdick, G.D. Prestwich, Adv Mater, 2011, 23, H41-H56.
[10] K.T. Dicker, L.A. Gurski, S. Pradhan-Bhatt, R.L. Witt, M.C. Farach-Carson, X. Jia, Acta biomaterialia, 2014, 10, 1558-1570.
[11] S. Gerecht, J.A. Burdick, L.S. Ferreira, S.A. Townsend, R. Langer, G. Vunjak-Novakovic, PNAS, 2007, 104, 11298-11303.
[12] C. Romanò, E. De Vecchi, M. Bortolin, I. Morelli, L. Drago, J Bone Jt Infect, 2017, 2, 63.
[13] M. Casale, A. Moffa, P. Vella, L. Sabatino, F. Capuano, B. Salvinelli, M.A. Lopez, F. Carinci, F. Salvinelli, SAGE Publications Sage UK: London, England, 2016.
[14] N.M. Salwowska, K.A. Bebenek, D.A. Żądło, D.L. Wcisło‐Dziadecka, J Cosmet Dermatol, 2016, 15, 520-526.
[15] A. Athirasala, F. Lins, A. Tahayeri, M. Hinds, A.J. Smith, C. Sedgley, J. Ferracane, L.E. Bertassoni, Scientific reports, 2017, 7, 3323.
[16] R. Levato, W.R. Webb, I.A. Otto, A. Mensinga, Y. Zhang, M. van Rijen, R. van Weeren, I.M. Khan, J. Malda, Acta biomaterialia, 2017, 61, 41-53.
[17] Y. Inuyama, C. Kitamura, T. Nishihara, T. Morotomi, M. Nagayoshi, Y. Tabata, K. Matsuo, K.K. Chen, M. Terashita, J BIOMED MATER RES B, 2010, 92, 120-128.
[18] N. Sahiner, W. Godbey, G.L. McPherson, V.T. John, Microgel, Colloid Polym Sci, 2006, 284, 1121-1129.
[19] C. Dalwadi, G. Patel, Recent Pat Nanotechnol, 2015, 9, 17-25.
[20] E. Hachet, H. Van den Berghe, E. Bayma, M.R. Block, R. Auzély-Velty, , Biomacromolecules, 2012, 13, 1818-1827.
[21] K.P. Krafts, Organogenesis, 2010, 6, 225-233.
[22] M.W. Tibbitt, K.S. Anseth, Biotechnol Bioeng, 2009, 103, 655-663.
[23] T. Tokatlian, C. Cam, S.N. Siegman, Y. Lei, T. Segura, Acta biomaterialia, 2012, 8, 3921-3931.
[24] M. Hounslow, R. Ryall, V. Marshall, AIChE J, 1988, 34, 1821-1832.
[25] N. Sahiner, J. Xinqiao, Turk J Chem, 2008, 32, 397-409.
[26] M. De Loos, B.L. Feringa, J.H. van Esch, Eur J Org Chem, 2005, 17, 3615-3631.
[27] M.N. Collins, C. Birkinshaw, J Appl Polym Sci, 2011, 120, 1040-1049.
[28] Z.Q. Cao, G.J. Wang, Chem. Rec., 2016, 16, 1398-1435.
[29] X. Jia, K.L. Kiick, Macromol Biosci 2009, 9, 140-156.
[30] J.K. Oh, R. Drumright, D.J. Siegwart, K. Matyjaszewski, Prog Polym Sci, 2008, 33, 448-477.
[31] J.K. Beattie, Lab Chip, 2006, 6, 1409-1411.
[32] J.D. Clogston, A.K. Patri, Springer, 2011, 697, 63-70.
[33] S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.-H. Zarrintan, K. Adibkia, J DRUG DELIV SCI TEC, 2016, 35, 16-23.
[34] P.R. Mishra, L. Al Shaal, R.H. Müller, C.M. Keck, Int J Pharm, 2009, 371, 182-189.
[35] L. Wu, J. Zhang, W. Watanabe, Adv Drug Deliv Rev, 2011, 63, 456-469.
[36] S. Honary, F. Zahir, J Pharm Res, 2013, 12, 265-273.
[37] S. Honary, M. Jahanshahi, P. Golbayani, P. Ebrahimi, K. Ghajar, J Nanosci Nanotechnol, 2010, 10, 7752-7757.
[38] S. Sakulwech, N. Lourith, U. Ruktanonchai, M. Kanlayavattanakul, Asian J. Pharm. Sci., 2018, 13, 498-504.
[39] C.E. Schanté, G. Zuber, C. Herlin, T.F. Vandamme, Carbohydr Polym, 2011, 85, 469-489.
[40] M. Al-Sibani, A. Al-Harrasi, R.H. Neubert, J Biochem Anal Stud, 2018, 3, 1-8.
[41] K. Tomihata, Y. Ikada, Biomaterials, 1997, 18, 189-195.