Web of Science (Emerging Sources Citation Index)

Document Type : Original Research Article


1 Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran

2 Department of Chemistry, Islamic Azad University, Shahreza Branch, P.O.BOX 311-86145, Shahreza, Isfahan, Iran



(St-co-BA) polymer through montmorillonite (MMT) nanocomposite emulsion is prepared by ‎in situ intercalative emulsion polymerization of styrene (St), butyl acrylate (BA) in the ‎presence of organic modified montmorillonite (OMMT) with different OMMT contents (0, ‎‎0.5, 1.0, 1.5, and 2.0 wt%). The synthetic compounds are characterized by FTIR, XRD. The ‎nanocomposite emulsions are characterized by applying FTIR, SEM, TEM, TGA and DSC ‎techniques in order to investigate the structure and the thermal properties of the coplymer. ‎The properties of the nanocomposite emulsions containing OMMT are better than styrene-‎acrylate emulsion. The study of monomer conversion versus time and different OMMT ‎contents indicates that the polymerization rate is decreased by increasing the concentration of ‎styrene and OMMT. Consequently the properties of the nanocomposite emulsion containing 1 ‎wt % OMMT are better than other contents. ‎

Graphical Abstract

Study of structure and thermal properties of styrene-butylacrylate ‎copolymer with OMMT nanocomposite emulsions


[1] G. Xua, C. Denga, L. Xinga, J. Hu, , Int. J. Polymer. Mater., 2013, 62, 488-492.


[2] G. Fei, H. Wang, X. Li, J. Mou, Polym. Bull., 2011, 67, 1017-1028.


[3] B.Q. Jiang, S.F. Hu, J.G. Zou, X.Y. Yu, Appl. Chem. Ind.,  2011, 168-170, 2065-2068.


[4] X.Z. Zhang, P. Wang, L. Liu, J.B. Xiong, Adv. Mater. Res., 2012, 535-537, 2491-2494.


[5] E. Pouget, J. Tonnar, P. Lucas, P. Lacroix-Desmazes, F. Ganachaud, B. Boutevin, Chem. Rev., 2010, 110, 1233-1277.


[6] H. Javaherian Naghash, F. Hajati, J. App. Polym. Sci., 2012, 123, 1227-1237.


[7] B.A. Bhanvase, D.V. Pinjari, P.R. Gogate, S.H. Sonawane, A.B. Pandit, Chem. Eng. J., 2012, 181-182, 770-778.


[8] H. Javaherian Naghash, R. Mohammadrahimpanah, Prog. Org. Coat., 2011, 70, 32-38.


[9] R.P. Moraes, A.M. Santos, P.C. Oliveira, F.C.T. Souza, M.d. Amaral, T.S. Valera, N.R. Demarquette, Macromol. Symp., 2006, 245-246, 106-115.


[10] S.S. Ray, M. Okamoto, Prog. Polym. Sci., 2003, 28, 1539-1641.


[11] J.W. Gilman, W.H. Awad, R.D. Davis, J. Shields, R.H. HarrisJr, C. Davis, A.B. Morgan, T.E. Sutto, J. Callahan, P.C. Trulove, H.C. DeLong, Chem. Mater., 2002, 14, 3776-3785.


[12] M. Zanetti, P. Bracco, L. Costa, Thermal degradation behaviour of PE/clay nanocomposites, Polym. Degrad. Stabil., 2004, 85, 657-665.


[13] J.W. Gilman, Appl. Clay Sci., 1999, 15, 31–49.


[14] A. Leszczynska, J. Njuguna, K. Pielichowski, J.R. Banerjee, ThermochimActa, 2007, 454, 1-22.


[15] E.P. Giannelis, Appl. Organomet. Chem., 1998, 12, 675-680.


[16] Y. Tang, Y. Hu, S. Wang, Z. Gui, Z. Chen, W. Fan, Polym. Degrad. Stabil., 2002, 78, 555-561. 


[17] S. Wang, Y. Hu, R. Zong, Y. Tang, Z. Chen, W. Fan,  Appl. Clay. Sci., 2004, 25, 49-55.


[18] L. Song, Y. Hu, Z. Lin, S. Xuan, S. Wang, Z. Chen, Polym. Degrad. Stabil., 2004, 86, 535-540.


[19] H. Javaherian Naghash, A. Karimzadeh, A.R. Massah, J. Appl. Polym. Sci., 2009, 112, 1037-1044.


[20] X. Yuan, X. Li, E. Zhu, J. Hu, S. Cao, W. Sheng, J. Carbohydr. Polym., 2010, 79, 373-379.


[21] A. Dabbagh, J.L. Ford, M.H. Rubinstein, J.E. Hogan, Int. J.  Pharm., 1996, 140, 85–95.


[22] S. Inukai, T. Tanma, S. Orihara, M. Konno, Chem. Eng. Res. Des., 2001, 79, 901-905.


[23] X. Feng, A. Zhong, D. Chen, J. Appl. Polym. Sci.2006101, 3963-3970.