Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article


1 Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia

2 Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Gadong, Brunei Darussalam

3 School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia



One of the classifications of peripheral neuropathy causes is due to the use of chemotherapeutic agents called chemotherapy-induced peripheral neuropathy (CIPN) conditions. Administration of platinum groups resulted in changes in the expression and function of Transient Receptor Potential Vanilloid type 1 (TRPV1) as well as altered neuronal excitation and propagation of nociceptive sensory signals. Moringa oleifera and Caesalpinia sappan L. are reported for their neuroprotective effect. In this study, we conducted a molecular docking study for 63 secondary metabolites of Moringa oleifera and 27 secondary metabolites of Caesalpinia sappan L. using an in silico approach targeting TRPV1 (PDB ID: 5IS0) using AutoDockVina software. ADMET characteristics were predicted using the SwissADME and pkCSM Online Tool. This study found that the binding energy of the six metabolites of Moringa oleifera (quercetin, ellagic acid, lutein, luteolin, rhamnetin, and 3-O-beta-D-Glucopyranosyl sitosterol) and three metabolites of Caesalpinia sappan L. (ombuin, phanginin I, and phanginin J) lower than native ligand through TRPV1 protein. This compounds are potential to be developed as a candidate for antagonist TRPV1. Furthermore, this study became basic data for developing TRPV1 antagonist-targeted therapy, especially in CIPN conditions.

Graphical Abstract

In silico molecular docking study from Moringa oleifera and Caesalpinia sappan L. secondary metabolites as antagonist TRPV1


Main Subjects

[1] L. Colloca, T. Ludman, D. Bouhassira, R. Baron, A.H. Dickenson, D. Yarnitsky, R. Freeman, A. Truini, N. Attal, N.B. Finnerup, C. Eccleston, E. Kalso, D.L. Bennett, R.H. Dworkin, S.N. Raja, Neuropathic pain, Nat. Rev. Dis. Prim., 2017, 3. [Crossref], [Google Scholar], [Publisher]
[2] N.P. Staff, A. Grisold, W. Grisold, A.J. Windebank, Chemotherapy-induced peripheral neuropathy: A current review, Ann. Neurol., 2017, 81, 772–781. [Crossref], [Google Scholar], [Publisher]
[3] J. Burgess, M. Ferdousi, D. Gosal, C. Boon, K. Matsumoto, A. Marshall, T. Mak, A. Marshall, B. Frank, R.A. Malik, U. Alam, Chemotherapy-induced peripheral neuropathy: epidemiology, pathomechanisms and treatment, Oncol. Ther., 2021, 9, 385–450. [Crossref], [Google Scholar], [Publisher]
[4] A.D. Desforges, C.M. Hebert, A.L. Spence B. Reid, H.A. Dhaibar, D. Cruz-Topete, E.M. Cornett, A.D. Kaye, I. Urits, O. Viswanath, Treatment and diagnosis of chemotherapy-induced peripheral neuropathy: An update, Biomed. Pharmacother., 2022, 147, 112671. [Crossref], [Google Scholar], [Publisher]
[5] H. Danesh, A. Bahmani, F. Moradi, B. Shirazipour, M. Milanifard, Pharmacological evaluation of Covid 19 vaccine in acute and chronic inflammatory neuropathies, J. Med. Chem. Sci., 2022, 5, 561–570. [Crossref], [Google Scholar], [Publisher]
[6] E.S. Schwartz, J.H. La, N.N. Scheff, B.M. Davis, K.M. Albers, G.F. Gebhart, TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis, J. Neurosci., 2013, 33, 5603–5611. [Crossref], [Google Scholar], [Publisher]
[7] J. Ann, H.S. Kim, S.A. Thorat, H. Kim, H.J. Ha, K. Choi, Y.H. Kim, M. Kim, S.W. Hwang, L.V. Pearce, T.E. Esch, N.A. Turcios, P.M. Blumberg, J. Lee, Discovery of nonpungent transient receptor potential vanilloid 1 (TRPV1) agonist as strong topical analgesic, J. Med. Chem., 2020, 63, 418–424. [Crossref], [Google Scholar], [Publisher]
[8] J. Li, C. Nie, Y. Qiao, J. Hu, Q. Li, Q. Wang, X. Pu, L. Yan, H. Qian, Design, synthesis and biological evaluation of novel 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole triazole derivatives as potent TRPV1 antagonists, Eur. J. Med. Chem., 2019, 178, 433–445. [Crossref], [Google Scholar], [Publisher]
[9] A. Chukyo, T. Chiba, T. Kambe, K. Yamamoto, K. Kawakami, K. Taguchi, K. Abe, Oxaliplatin-induced changes in expression of transient receptor potential channels in the dorsal root ganglion as a neuropathic mechanism for cold hypersensitivit, Neuropeptides, 2018, 67, 95–101. [Crossref], [Google Scholar], [Publisher]
[10] J. Meng, S. Qiu, L. Zhang, M. You, H. Xing J. Zhu, Berberine alleviate cisplatin-induced peripheral neuropathy by modulating inflammation signal via TRPV1, Front. Pharmacol., 2022, 12, 1–14. [Crossref], [Google Scholar], [Publisher]
[11] B. Kievit, A.D. Johnstone, J. Gibon, P.A. Barker, Mitochondrial reactive oxygen species mediate activation of TRPV1 and calcium entry fllowing peripheral sensory axotomy, Front. Mol. Neurosci., 2022, 15, 852181. [Crossref], [Google Scholar], [Publisher]
[12] I.A. Khasabova, V.S. Seybold, D.A. Simone, The role of PPARγ in chemotherapy-evoked pain, Neurosci. Lett., 2021, 753. [Crossref], [Google Scholar], [Publisher]
[13] L. Luongo, B. Costa, B. D’Agostino, F. Guida, F. Comelli, L. Gatta, M. Matteis, N. Sullo, L. De Petrocellis, V. De Novellis, S. Maione, V. Di Marzo, Palvanil, a non-pungent capsaicin analogue, inhibits inflammatory and neuropathic pain with little effects on bronchopulmonary function and body temperature, Pharmacol. Res., 2012, 66, 243–250. [Crossref], [Google Scholar], [Publisher]
[14] M. Zhuo, Long-term potentiation in the anterior cingulate cortex and chronic pain, Philos Trans. R Soc. B: Biol. Sci., 2014, 369, 1–11. [Crossref], [Google Scholar], [Publisher]
[15] J. Luo, A. Bavencoffe, P. Yang, J. Feng, S. Yin, A. Qian, W. Yu, S. Liu, X. Gong, T. Cai, E. T. Walters, C. W. Dessauer, & H. Hu, Zinc inhibits TRPV1 to alleviate chemotherapy-induced neuropathic pain, J. Neurosci., 2018, 38, 474. [Crossref], [Google Scholar], [Publisher]
[16] Y. Zhang, F. Huang, Y. Xu, W. Xiang, C. Xie, TRPV1 is involved in the antinociceptive effects of resveratrol in paclitaxel-induced neuropathic pain, All life, 2021, 14, 66–74. [Crossref], [Google Scholar], [Publisher]
[17] A. Bhattacharya, P. Tiwari, P.K. Sahu, S. Kumar, A review of the phytochemical and pharmacological characteristics of Moringa oleifera, J. Pharm. Bioallied. Sci., 2018, 10, 181. [Crossref], [Google Scholar], [Publisher]
[18] Y.W. Prajoko, S. Pramono, A. Hartanto, M.A. Prakoso, The effect of Moringa Oleifera extract on CPK and quality of life of breast cancer patients receiving aromatase inhibitor therapy, J. Med. Chem. Sci., 2023, 6, 2748–2753. [Crossref], [Pdf], [Publisher]
[19] R.K. Saini, I. Sivanesan, Y.S. Keum, Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance, 3 Biotech, 2016, 6. [Crossref], [Google Scholar], [Publisher]
[20] M.R. Sulaiman, Z.A. Zakaria, A.S. Bujarimin, M.N. Somchit, D.A. Israf, S. Moin, Evaluation of Moringa oleifera aqueous extract for antinociceptive and anti-inflammatory activities in animal models, Pharm. Biol., 2008, 4, 838–845. [Crossref], [Google Scholar], [Publisher]
[21] I.N. Solomon, M.G. Kelechi, N.O. Chinenyenwa, Analgesic (Antinociceptive) property of Moringa oleifera ethanol leaf extract in albino rats, J. Adv. Biol.  Biotechnol., 2014, 1, 23–29. [Crossref], [Google Scholar], [Publisher]
[22] M.H.G. Dehghan, Phytochemical and pharmacological evaluation of ethanolic Extract of Moringa Oleifera as neuroprotective agent in vincristine induced peripheral neuropathy, J. Sci. Technol., 2022, 7, 1–18. [Crossref], [Pdf], [Publisher]
[23] M.S. Rajput, N.P. Nirmal, S.J. Nirmal, C. Santivarangkna, Bio-actives from Caesalpinia sappan L.: Recent advancements in phytochemistry and pharmacology, S Afr J Bot, 2022, 151, 60–74. [Crossref], [Google Scholar], [Publisher]
[24] M.R.A. Syamsunarno, R. Safitri, Y. Kamisah, Protective effects of caesalpinia sappan Linn. and its bioactive compounds on cardiovascular organs, Front. Pharmacol., 2021, 12. [Crossref], [Google Scholar], [Publisher]
[25] N.M. Saptarini, D.A. Deswati, Analgesic and antipyretic activities of ethanolic extract of sappan wood (Caesalpinia sappan l.) leaves, Res. J. Pharm. Technol., 2021, 14, 5213–5216. [Crossref], [Google Scholar], [Publisher]
[26] F.A. Fajrin, A.E. Nugroho, A. Nurrochmad, & R. Susilowati, Molecular docking analysis of ginger active compound on transient receptor potential cation channel subfamily V member 1 (TRPV1), Indones J Chem, 2018, 18, 179–185. [Crossref], [Google Scholar], [Publisher]
[27] S.F. Jasim, Y.F. Mustafa, Synthesis and antidiabetic assessment of new coumarin-disubstituted benzene conjugates: An in silico–in virto study, J. Med. Chem. Sci., 2022, 5, 887–899. [Crossref], [Google Scholar], [Publisher]
[28] M.H. Yang, S.H. Jung, G. Sethi, K.S. Ahn, Pleiotropic pharmacological actions of capsazepine, a synthetic analogue of capsaicin, against various cancers and inflammatory diseases, Molecules, 2019, 24, 995. [Crossref], [Google Scholar], [Publisher]
[29] M.I. Azevedo, G. Brito, D. Wong, The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy, Mol. Pain, 2013, 9. [Crossref], [Google Scholar], [Publisher]
[30] W. Gao, Y. Zan, Z.J. Wang, X. Hu, F. Huang, Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1, Acta Pharmacol Sin, 2016, 37, 1166–1177. [Crossref], [Google Scholar], [Publisher]
[31] F. Yang, J. Zheng, Understand spiciness: mechanism of TRPV1 channel activation by capsaicin, Protein Cell, 2017, 8, 169–177. [Crossref], [Google Scholar], [Publisher]
[32] G. Ye, C. Lin, Y. Zhang, Z. Ma, Y. Chen, L. Kong, L. Yuan, T. Ma, Quercetin alleviates neuropathic pain in the rat CCI model by mediating AMPK/MAPK pathway, J. Pain Res., 2021, 14, 1289–1301. [Crossref], [Google Scholar], [Publisher]
[33] D.A. Valério, S.R. Georgetti, D.A. Magro, R. Casagrande, T.M. Cunha, F.T.M.C. Vicentini, S.M. Vieira, M.J.V. Fonseca, S.H. Ferreira, F.Q. Cunha, W.A. Verri, Quercetin reduces inflammatory pain: Inhibition of oxidative stress and cytokine production, J. Nat. Prod., 2009, 72, 1975–1979. [Crossref], [Google Scholar], [Publisher]
[34] S.M. Borghi, F.A. Pinho-Ribeiro, V. Fattori, A.J. Bussmann, J.A. Vignoli, D. Camilios-Neto, R. Casagrande, & W. A. Verri, Quercetin inhibits peripheral and spinal cord nociceptive mechanisms to reduce intense acute swimming-induced muscle pain in mice, PLoS ONE, 2016, 11. [Crossref], [Google Scholar], [Publisher]
[35] Z. Fazlin, T. Myo, D.M. Fauzi, M. Resni, M. Noorzaid, Neuroprotective effects of ellagic acid, rutin and p-coumaric acid on diabetic neuropathy rats, Asian J. Med. Health Sci., 2022, 5, 42–57. [Google Scholar], [Publisher]
[36] M.T. Taghi, B. Naghizadeh, B. Ghorbanzadeh, Central and peripheral antinociceptive effects of ellagic acid in different animal models of pain, Eur. J. Pharmacol., 2013, 707, 46–53. [Crossref], [Google Scholar], [Publisher]
[37] S. Shahidi, A. Komaki, S. Raoufi, I. Salehi, M. Zarei, M. Mahdian, C. Shahidi, The anti-nociceptive effect of ellagic acid in streptozotocin-induced hyperglycemic rats by oxidative stress involvement, BCN, 2021, 12, 861–872. [Crossref], [Google Scholar], [Publisher]
[38] G.W. Pasternak, Y.X. Pan, Mu opioids and their receptors: evolution of a concept, Pharmacol. Rev., 2013, 65, 1257–1317. [Crossref], [Google Scholar], [Publisher]
[39] P.C. Scherer, N.W. Zaccor, N.M. Neumann, C. Vasavda, R. Barrow, A.J. Ewald, F. Rao, C.J. Sumner, S.H. Snyder, TRPV1 is a physiological regulator of μ-opioid receptors, Proc. Natl. Acad. Sci. USA, 2017, 114, 13561–13566. [Crossref], [Google Scholar], [Publisher]
[40] N. Abdullah, C. Altier, TRPV1 and MOR working in tandem: implications for pain and opioids use, Neuropsychopharmacol, 2020, 45, 225–226. [Crossref], [Google Scholar], [Publisher]
[41] L. Staurengo-Ferrari, S.S. Mizokami, J.J. Silva, F.O.N. Da Silva, E.H.S. Sousa, L.G. Da França, M.L. Matuoka, S.R. Georgetti, M.M. Baracat, R. Casagrande, W.R. Pavanelli, W.A. Verri, The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: Involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway, Pharmacol. Biochem. Behav., 2013, 105, 157–165. [Crossref], [Google Scholar], [Publisher]
[42] F. Ntalouka, A. Tsirivakou, Luteolin: A promising natural agent in management of pain in chronic conditions, Front. Pain Res., 2023, 4, 1–19. [Crossref], [Google Scholar], [Publisher]
[43] M. Kim, J. Jung, N. Young, J. Hyung, J. Chung, The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes, Anat. Sci. Int., 2019, 94, 285–294. [Crossref], [Google Scholar], [Publisher]
[44] H. Yasar, A. Ersoy, G. N. Yazici, H. Suleyman, F.B. Özgeriş, Y. Kemal, The effect of lutein on paclitaxel-induced neuropathy and neuropathic pain in rats, Int. J. Clin. Exp. Med., 2020, 13, 4316–4323. [Pdf], [Google Scholar], [Publisher]