[1] H.A. Saadeh, K.A. Sweidan, M.S. Mubarak, Recent advances in the synthesis and biological activity of 8-hydroxyquinolines, Molecules, 2020, 25, 4321. [Crossref], [Google Scholar], [Publisher]
[2] C. De la Guardia, D.E. Stephens, H.T. Dang, M. Quijada, O.V. Larionov, R. Lleonart, Antiviral activity of novel quinoline derivatives against dengue virus serotype 2, Molecules, 2018, 23, 672. [Crossref], [Google Scholar], [Publisher]
[3] J. Kos, C.F. Ku, I. Kapustikova, M. Oravec, H.J. Zhang, J. Jampilek, 8-Hydroxyquinoline-2-carboxanilides as antiviral agents against avian influenza virus, ChemistrySelect, 2019, 4, 582–4587. [Crossref], [Google Scholar], [Publisher]
[4] T.H. Vu, N.T. Ha-Duong, A. Aubry, E. Capton, P. Fechter, P. Plesiat, P. Verbeke, N. Serradji, Synthesis and biological applications of some novel 8-hydroxyquinoline urea and thiourea derivatives, Bioorg. Chem., 2019, 83, 180–185. [Crossref], [Google Scholar], [Publisher]
[5] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , CA Cancer J. Clin., 2020, 71, 209–249. [Crossref], [Google Scholar], [Publisher]
[6] X. Yang, P. Cai, Q. Liu, J. Wu, Y. Yin, X. Wang, L. Kong, Novel 8-hydroxyquinoline derivatives targeting β-amyloid aggregation, metal chelation and oxidative stress against Alzheimer's disease, Bioorg. Med. Chem., 2018, 26, 3191–3201. [Crossref], [Google Scholar], [Publisher]
[7] C. De la Guardia, D.E. Stephens, H.T. Dang, M. Quijada, O.V. Larionov, R. Lleonart, Antiviral activity ofnovel quinoline derivatives against dengue virus serotype,
2018,
2, 672. [
Crossref], [
Google Scholar], [
Publisher]
[8] R. Abalo, J. Uranga, I. Pe rez-Garcıa, R. De Andres, R. Giron, G. Vera, A. Lopez-Perez, M. Martın-Fontelles,
Neurogastroenterol.
Motil.
2017,
29, 12952. [
Crossref], [
Google Scholar], [
Publisher]
[9] K. Nurgali, R.T. Jagoe, R. Abalo,
Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae,
Front. Pharmacol.,
2018,
9, 245. [
Crossref], [
Google Scholar], [
Publisher]
[10] M.J. Matos, S. Vazquez-Rodriguez, E. Uriarte, L. Santana, Crystal structure of (E)-3-(3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one, C27H21N5O,
Expert Opin. Ther. Pat.,
2015,
25, 351–366. [
Crossref], [
Google Scholar], [
Publisher]
[11] B.B. Chavan, A.S. Gadekar, P.P. Mehta, P.K. Vawhal, A.K. Kolsure, A.R. Chabukswar, Synthesis and medicinal significance of chalcones- a review,
Asian J. Biomed. Pharm. Sci.,
2016,
6, 56. [Crossref], [
Google Scholar], [
Publisher]
[12] B. Salehi, C. Quispe, I. Chamkhi, N. El Omari, A. Balahbib, J. Sharifi-Rad, A. Bouyahya, M. Akram, M. Iqbal, A.O. Docea, C. Caruntu, G. Leyva-Gómez, A. Dey, M. Martorell, D. Calina, V. López, Francisco Les, Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence,
Front. Pharmacol.,
2020,
11, 592654. [
Crossref], [
Google Scholar], [
Publisher]
[14] X. Zhang, K. Rakesh, S. Bukhari, M. Balakrishna, H. Manukumar, H.L. Qin,
Preparation with biological study for pyrimidine derivatives , Bioorg. Chem., 2018,
80, 86–93. [
Crossref], [
Google Scholar], [
Publisher]
[15] L. Arshad, I. Jantan, S.N.A. Bukhari, M. Haque, Immunosuppressive effects of natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives, on immune cells: A review,
Front. Pharmacol.,
2017,
8, 22. [
Crossref], [
Google Scholar], [
Publisher]
[16] P.K. Vishal, J.M. Oh, A. Khames, M.A. Abdelgawad, A.S. Nair, L.R. Nath, N. Gambacorta, F. Ciriaco, O. Nicolotti, H. Kim, B. Mathew, Trimethoxylated halogenated chalcones as dual inhibitors of MAO-B and BACE-1 for the treatment of neurodegenerative disorders,
Pharmaceutics,
2021,
13, 850. [
Crossref], [
Google Scholar], [
Publisher]
[17] G.F. Zha, H.L. Qin, B.G. Youssif, M.W. Amjad, M.A.G. Raja, A.H. Abdelazeem, S.N.A. Bukhari, Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance,
Eur. J. Med. Chem.,
2017,
135, 34–48. [
Crossref], [
Google Scholar], [
Publisher]
[18] S.N.A. Bukhari, N.H. Alotaibi, W. Ahmad, K.S. Alharbi, M.A. Abdelgawad, M.M. Al-Sanea, M.M. Ahmad, M.W. Amjad, M.A.G. Raja, M.A. Hussain, Evaluation of ligustrazine-based synthetic compounds for their antiproliferative effects,
Med. Chem.,
2021,
17, 956–962. [
Crossref], [
Google Scholar], [
Publisher]
[20] V. Sumangala, B. Poojary, N. Chidananda, T Arulmoli, S. Shenoy, Synthesis and biological evaluation of some Schiff bases of 4-amino-5-(4-methylsulfonyl)benzyl-2,4-dihydro-3H [1,2,4]-triazole-3-thione,
Med. Chem. Res.,
2013,
22, 2921-2928. [
Crossref], [
Google Scholar], [
Publisher]
[21] P. Kaur, R. Kaur, M. Goswami, A review on methods of synthesis of 1,2,4-triazole derivatives,
Int. Res. J. Pharm.,
2018,
9, 1–35. [
Crossref], [
Google Scholar], [
Publisher]
[22] X. Cao, W. Wang, S. Wang, L. Bao, Asymmetric synthesis of novel triazole derivatives
and their in vitro antiviral activity
and mechanism of action,
Eur. J. Med. Chem., 2017,
139, 718–725. [
Crossref], [
Google Scholar], [
Publisher]
[23] F. Gao, T. Wang, J. Xiao, G. Huang, Spectroscopic aspects (experimental/theoretical (FT-IR, NMR)) and electronic properties of 3-p-chlorobenzyl-4-[3-(3-methoxybenzoxy)- benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one, E
ur. J. Med. Chem.,
2019,
173, 274–81. [
Crossref], [
Google Scholar], [
Publisher]
[24] Y.N. Cheng, Z.H. Jiang, L.S. Sun, Z.Y. Su, M.M. Zhang, H.L. Li, Synthesis of 1, 2, 4-triazole benzoyl arylamine derivatives and their high antifungal activities,
Eur. J. Med. Chem.,
2020,
200, 112463. [
Crossref], [
Google Scholar], [
Publisher]
[25] N. Ganesh, M. Singh, V.M. Chandrashekar, GV. Pujar, Antitubercular potential of novel isoxazole encompassed 1, 2, 4- triazoles: Design, synthesis, molecular docking study and evaluation of antitubercular activity,
Anti-Infect Agents,
2021,
19, 147–161. [
Crossref], [
Google Scholar], [
Publisher]
[26] L. Huang, J. Ding, M. Li, Z. Hou, Y. Geng, X. Li, H. Yu, Discovery of [1,2,4]-triazolo [1,5-a]pyrimidine-7(4H)-one derivatives as positive modulators of GABAA1 receptor with potent anticonvulsant activity and low toxicity,
Eur. J. Med. Chem.,
2020,
185, 111824. [
Crossref], [
Google Scholar], [
Publisher]
[27]
L. Emami,
S. Sadeghian,
A. Mojaddami,
S. khabnadideh,
A. Sakhteman, H.
Sadeghpour,
Z. Faghih,
M. Fereidoonnezhad,
Z. Rezaei, Design, synthesis and evaluation of novel 1,2,4-triazole derivatives as promising anticancer agents,
BMC Chemistry,
2022,
16, 91. [
Crossref], [
Google Scholar], [
Publisher]
[28] Y. Yang, Y. Zhang, S. Hao, Q. Kan, Biomedical applications of biodegradable polymers,
J. Colloid Interface Sci.,
2011,
362, 157–163. [
Crossref], [
Google Scholar], [
Publisher]
[29] G. Farruggia, S. Iotti, M. Lombardo, C. Marraccini, D. Petruzziello, L. Prodi, M. Sgarzi, C. Trombini, N. Zaccheron, Microwave assisted synthesis of a small library of substituted N,N'-bis((8-hydroxy-7-quinolinyl) methyl)-1,10-diaza-18-crown-6 ethers,
J. Org. Chem.,
2010,
75, 6275–6278. [
Crossref], [
Google Scholar], [
Publisher]
[30] N.J. Alganabi, S.R. Rasool, Recent advances in sulfadiazine's preparation, reactions and biological applications,
J. Pharm. Sci. Res.,
2018,
10, 2796-2799. [
Google Scholar], [
Publisher]
[31] M. Ridha Abood, S. Ridha Rasool, Synthesis, characterization and study of some new heterocyclic compounds for imidazolidine-dione derivatives,
Res. J. Pharm. Biol. Chem. Sci.,
2016,
7, 618. [
Google Scholar], [
Publisher]
[32] A.R. Katritzky, M. Yoshioka-Tarver, B.E. D.M. El-Gendy, C.D. Hall, Synthesis and photochemistry of pH-sensitive GFP chromophore analogsو
Tetrahedron Letters,
2011,
52, 2224-2227. [
Crossref], [
Google Scholar], [
Publisher]
[34] S.N.A. Bukhari, I. Jantan, V. H. Masand , D.T. Mahajan, M. Sher, M. Naeem-ul-Hassan, M.W. Amjad, Synthesis and evaluation of chalcone derivatives as inhibitors of neutrophils' chemotaxis, phagocytosis and production of reactive oxygen species, Eur. J. Med. Chem., 2014, 83, 355–365.
[
Crossref], [
Google Scholar], [
Publisher]
[36] C. Valgas; S. Machado de Souza, E.FA Smânia, A. Smânia Jr, Screening methods to determine antibacterial activity, Braz. J. Microbiol., 2007, 38, 369-380. [Crossref], [Google Scholar], [Publisher]
[37] P.M. Rajesh, P.J. Natvar, In vitro antioxidant activity of coumarin compounds by. DPPH, super oxide and nitric,
J. Adv. Pharm. Edu. Rese,
2011,
1, 52-68. [
Google Scholar], [
Publisher]