Document Type : Original Research Article

Authors

1 Department of Chemistry, Faculty of Science, University Babylon, Babylon, Iraq

2 Department of Genetic Engineering, Faculty of Biotechnology AL-Qasim Green University Iraq

3 Department of Chemical Engineering, Faculty of Engineering, University Babylon, Babylon, Iraq

4 Department of Medical Laboratory Techniques, Al-Mustaqbal University College, 51001 Hillah, Babylon, Iraq

Abstract

Research involved preparing new compounds from hydroxyquioline with formaldehyde to form P1 and then reacted with benzylalcohol to form P2 reacted chloroaceticacid  and SOCl2 to form P3 and P4   with thiosemicarbazide to form P5 and P2 reacted with benzydehyde to form chalcone reacted with H2O2 to form P8. The compounds were identified via TLC, FTIR 1HNMR and 13CNMR. The measured the antibacterial and antioxidant activity of the prepared compounds, to give high resulte.

Graphical Abstract

Synthesis and diagnosis of triazole and oxirane derivatives from hydroxyquioline with evaluating their biological and antioxidant activity

Keywords

Main Subjects

[1] H.A. Saadeh, K.A. Sweidan, M.S. Mubarak, Recent advances in the synthesis and biological activity of 8-hydroxyquinolines, Molecules, 2020, 25, 4321. [Crossref], [Google Scholar], [Publisher]

[2] C. De la Guardia, D.E. Stephens, H.T. Dang, M. Quijada, O.V. Larionov, R. Lleonart, Antiviral activity of novel quinoline derivatives against dengue virus serotype 2, Molecules, 2018, 23, 672. [Crossref], [Google Scholar], [Publisher]

[3] J. Kos, C.F. Ku, I. Kapustikova, M. Oravec, H.J. Zhang, J. Jampilek, 8-Hydroxyquinoline-2-carboxanilides as antiviral agents against avian influenza virus, ChemistrySelect, 2019, 4, 582–4587. [Crossref], [Google Scholar], [Publisher]

[4] T.H. Vu, N.T. Ha-Duong, A. Aubry, E. Capton, P. Fechter, P. Plesiat, P. Verbeke, N. Serradji, Synthesis and biological applications of some novel 8-hydroxyquinoline urea and thiourea derivatives, Bioorg. Chem., 2019, 83, 180–185. [Crossref], [Google Scholar], [Publisher]

[5] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , CA Cancer J. Clin., 2020, 71, 209–249. [Crossref], [Google Scholar], [Publisher]

[6] X. Yang, P. Cai, Q. Liu, J. Wu, Y. Yin, X. Wang, L. Kong, Novel 8-hydroxyquinoline derivatives targeting β-amyloid aggregation, metal chelation and oxidative stress against Alzheimer's disease, Bioorg. Med. Chem., 2018, 26, 3191–3201. [Crossref], [Google Scholar], [Publisher]

[7] C. De la Guardia, D.E. Stephens, H.T. Dang, M. Quijada, O.V. Larionov, R. Lleonart, Antiviral activity ofnovel quinoline derivatives against dengue virus serotype, 2018, 2, 672. ‎[Crossref], [Google Scholar], [Publisher]‎
[8] R. Abalo, J. Uranga, I. Pe rez-Garcıa, R. De Andres, R. Giron, G. Vera, A. Lopez-Perez, M. Martın-Fontelles, Neurogastroenterol. Motil. 2017, 29, 12952. [Crossref], [Google Scholar], [Publisher]
[9] K. Nurgali, R.T. Jagoe, R. Abalo, Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae, Front. Pharmacol., 2018, 9, 245. [Crossref], [Google Scholar], [Publisher]
[10] M.J. Matos, S. Vazquez-Rodriguez, E. Uriarte, L. Santana, Crystal structure of (E)-3-(3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-pyrazol-4-yl)-1-phenylprop-2-en-1-one, C27H21N5O, Expert Opin. Ther. Pat., 2015, 25, 351–366. [Crossref], [Google Scholar], [Publisher]
[11] B.B. Chavan, A.S. Gadekar, P.P. Mehta, P.K. Vawhal, A.K. Kolsure, A.R. Chabukswar, Synthesis and medicinal significance of chalcones- a review, Asian J. Biomed. Pharm. Sci., 2016, 6, 56. [Crossref], [Google Scholar], [Publisher]
[12] B. Salehi, C. Quispe, I. Chamkhi, N. El Omari, A. Balahbib, J. Sharifi-Rad, A. Bouyahya, M. Akram, M. Iqbal, A.O. Docea, C. Caruntu, G. Leyva-Gómez, A. Dey, M. Martorell, D. Calina, V. López, Francisco Les, Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence, Front. Pharmacol., 2020, 11, 592654. [Crossref], [Google Scholar], [Publisher]
[14] X. Zhang, K. Rakesh, S. Bukhari, M. Balakrishna, H. Manukumar, H.L. Qin, Preparation with biological study for pyrimidine derivatives , Bioorg. Chem., 2018, 80, 86–93. [Crossref], [Google Scholar], [Publisher]
[15] L. Arshad, I. Jantan, S.N.A. Bukhari, M. Haque, Immunosuppressive effects of natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives, on immune cells: A review, Front. Pharmacol., 2017, 8, 22. [Crossref], [Google Scholar], [Publisher]
[16] P.K. Vishal, J.M. Oh, A. Khames, M.A. Abdelgawad, A.S. Nair, L.R. Nath, N. Gambacorta, F. Ciriaco, O. Nicolotti, H. Kim, B. Mathew, Trimethoxylated halogenated chalcones as dual inhibitors of MAO-B and BACE-1 for the treatment of neurodegenerative disorders, Pharmaceutics, 2021, 13, 850. [Crossref], [Google Scholar], [Publisher]
[17] G.F. Zha, H.L. Qin, B.G. Youssif, M.W. Amjad, M.A.G. Raja, A.H. Abdelazeem, S.N.A. Bukhari, Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance, Eur. J. Med. Chem., 2017, 135, 34–48. [Crossref], [Google Scholar], [Publisher]
[18] S.N.A. Bukhari, N.H. Alotaibi, W. Ahmad, K.S. Alharbi, M.A. Abdelgawad, M.M. Al-Sanea, M.M. Ahmad, M.W. Amjad, M.A.G. Raja, M.A. Hussain, Evaluation of ligustrazine-based synthetic compounds for their antiproliferative effects, Med. Chem., 2021, 17, 956–962. [Crossref], [Google Scholar], [Publisher]
[19] A.A. Alkhaldi, H.P.D. Koning, S.N.A. Bukhari, Synthetic ligustrazine based cyclohexanone and oxime analogs as anti-trypanosoma and anti-leishmanial agentes,  Braz. J. Pharm. Sci., 2021, 5, e18997. [Crossref], [Google Scholar], [Publisher]
[20] V. Sumangala, B. Poojary, N. Chidananda, T Arulmoli, S. Shenoy, Synthesis and biological evaluation of some Schiff bases of 4-amino-5-(4-methylsulfonyl)benzyl-2,4-dihydro-3H [1,2,4]-triazole-3-thione, Med. Chem. Res., 2013, 22, 2921-2928. [Crossref], [Google Scholar], [Publisher]
[21] P. Kaur, R. Kaur, M. Goswami, A review on methods of synthesis of 1,2,4-triazole derivatives, Int. Res. J. Pharm., 2018, 9, 1–35. [Crossref], [Google Scholar], [Publisher]
[22] X. Cao, W. Wang, S. Wang, L. Bao, Asymmetric synthesis of novel triazole derivatives and their in vitro antiviral activity and mechanism of action, Eur. J. Med. Chem., 2017, 139, 718–725. [Crossref], [Google Scholar], [Publisher]
[23] F. Gao, T. Wang, J. Xiao, G. Huang, Spectroscopic aspects (experimental/theoretical (FT-IR, NMR)) and electronic properties of 3-p-chlorobenzyl-4-[3-(3-methoxybenzoxy)- benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one, Eur. J. Med. Chem., 2019, 173, 274–81. [Crossref], [Google Scholar], [Publisher]
[24] Y.N. Cheng, Z.H. Jiang, L.S. Sun, Z.Y. Su, M.M. Zhang, H.L. Li, Synthesis of 1, 2, 4-triazole benzoyl arylamine derivatives and their high antifungal activities, Eur. J. Med. Chem., 2020, 200, 112463. [Crossref], [Google Scholar], [Publisher]
[25] N. Ganesh, M. Singh, V.M. Chandrashekar, GV. Pujar, Antitubercular potential of novel isoxazole encompassed 1, 2, 4- triazoles: Design, synthesis, molecular docking study and evaluation of antitubercular activity, Anti-Infect Agents, 2021, 19, 147–161. [Crossref], [Google Scholar], [Publisher]
[26] L. Huang, J. Ding, M. Li, Z. Hou, Y. Geng, X. Li, H. Yu, Discovery of [1,2,4]-triazolo [1,5-a]pyrimidine-7(4H)-one derivatives as positive modulators of GABAA1 receptor with potent anticonvulsant activity and low toxicity, Eur. J. Med. Chem., 2020, 185, 111824. [Crossref], [Google Scholar], [Publisher]
[27] L. Emami, S. Sadeghian, A. Mojaddami, S. khabnadideh, A. Sakhteman, H. Sadeghpour, Z. Faghih, M. Fereidoonnezhad, Z. Rezaei, Design, synthesis and evaluation of novel 1,2,4-triazole derivatives as promising anticancer agents, BMC Chemistry, 2022, 16, 91. [Crossref], [Google Scholar], [Publisher]
[28] Y. Yang, Y. Zhang, S. Hao, Q. Kan, Biomedical applications of biodegradable polymers, J. Colloid Interface Sci., 2011, 362, 157–163. [Crossref], [Google Scholar], [Publisher]
[29] G. Farruggia, S. Iotti, M. Lombardo, C. Marraccini, D. Petruzziello, L. Prodi, M. Sgarzi, C. Trombini, N. Zaccheron, Microwave assisted synthesis of a small library of substituted N,N'-bis((8-hydroxy-7-quinolinyl) methyl)-1,10-diaza-18-crown-6 ethers, J. Org. Chem., 2010, 75, 6275–6278. [Crossref], [Google Scholar], [Publisher]
[30] N.J. Alganabi, S.R. Rasool, Recent advances in sulfadiazine's preparation, reactions and biological applications, J. Pharm. Sci. Res., 2018, 10, 2796-2799. [Google Scholar], [Publisher]
[31] M. Ridha Abood, S. Ridha Rasool, Synthesis, characterization and study of some new heterocyclic compounds for imidazolidine-dione derivatives, Res. J. Pharm. Biol. Chem. Sci., 2016, 7, 618. [Google Scholar], [Publisher]
[32] A.R. Katritzky, M. Yoshioka-Tarver, B.E. D.M. El-Gendy, C.D. Hall, Synthesis and photochemistry of pH-sensitive GFP chromophore analogsو Tetrahedron Letters, 2011, 52, 2224-2227.‏ [Crossref], [Google Scholar], [Publisher]
[33] A.H.K. Sharba, R.H. Al-Bayati, N. Rezki, M.R. Aouad, Molecules, 2005, 10, 1155-1156. [Crossref], [Google Scholar], [Publisher]
[34] S.N.A. Bukhari, I. Jantan, V. H.  Masand , D.T. Mahajan, M. Sher, M. Naeem-ul-Hassan, M.W. Amjad, Synthesis and  evaluation of chalcone derivatives as inhibitors of neutrophils' chemotaxis, phagocytosis  and production of reactive  oxygen species, Eur. J. Med. Chem., 2014, 83, 355–365.              
[Crossref], [Google Scholar], [Publisher]

[35] D. Ngo, M. Kalala, V. Hogan, R. Manchan,    Regioselective Suzuki–Miyaura cross-coupling reactions of the bis(triflate) of 4,7-dihydroxy coumarin, Tetrahedron Letters, 2014, 55, 4496-4500. [Crossref], [Google Scholar], [Publisher]

[36] C. Valgas; S. Machado de Souza, E.FA Smânia, A. Smânia Jr, Screening methods to determine antibacterial activity, Braz. J. Microbiol.,  2007, 38, 369-380. [Crossref], [Google Scholar], [Publisher]

[37] P.M. Rajesh, P.J. Natvar, In vitro antioxidant activity of coumarin compounds by. DPPH, super oxide and nitric, J. Adv. Pharm. Edu. Rese, 2011, 1, 52-68. [Google Scholar], [Publisher]