Document Type : Original Research Article


1 Department of Chemistry, College of Science, University of Thi-Qar, 64001 Nassiria, Iraq

2 Thi-Qar General Directorate of Education, 64001 Nassiria, Iraq


Preparation of AAN and ACl is performed by reaction 1 equivalent of en and 2 equivalents of acetyl acetone and 3-chloro acetyl acetone, respectively. Fe2+, Co2+, and Ni2+complexes with both bis(acetylacetone) ethylenediimine AAN and bis(3-chloroacetylacetone) ethylenediimine ACl ware synthesized. The adduct complex [Fe(AAN)(bpy)2] was also synthesized from reaction of [Fe(AAN)(H2O)2] with 4,4-bipyridine. These N2O2 metal complexes have been characterized by FT-IR, UV-Vis, and TG analysis as well as XRD spectrometries. Interaction of 4,4-bipyridine (bpy) with metal (II) complexes in solution affords adduct complexes, i.e. through coordination of bpy with metal ion (II). Interaction of  with metal (II) complexes in solution affords adduct complexes, i.e. through coordination of  with metal ion (II). The solutions of adduct complexes happened among bis-viologen  and metal complexes have been reduced by activated zinc powder to afford viologen-based molecular switches.

Graphical Abstract

Iron (II), cobalt (II), and nickel (II) complexes of bis- (3-chloroacetylacetonate) ethylenediimine and bis-(acetylacetonate) ethylenediimine and their viologen molecular switches


Main Subjects

[1] J. Kumar, A. Rai, V. Raj, A comprehensive review on the pharmacological activity of Schiff base containing derivatives, Organic & Medicinal Chemistry International Journal, 2017, 1, 88-102.[Crossref], [Google Scholar], [Publisher]
[2] A.H. Gatea, W.S. Abdul-Hassan, S.A. Ali, Z.M. Mahdi, Ligand adducts of bis (acetylacetonato) copper (II), bis (3-chloroacetylacetonato) copper (II) with 4, 4'-bipyridine, and propylene spacered bis-viologen, J. Med. Chem. Sci., 2023, 6, 280-303. ‎[Crossref], [Google Scholar], [Publisher]‎
[3] S. Mehrpour, A. Najafi, A. Ahmadi, T. Zarei, V. Pleqi, K. Basiri, K. KomLakh, H. Abdollahi, K.H. Emami, Relationship of the optic nerve sheath diameter and repeated invasive intracranial pressure measures in traumatic brain injury patients; a diagnostic accuracy study, Front. emerg. med., 2022, 6, e6.  ‎[Crossref], [Google Scholar], [Publisher]‎
[4] P.G. Cozzi, Metal–Salen Schiff base complexes in catalysis: practical aspects, Chem. Soc. Rev., 2004, 33, 410-421. ‎[Crossref], [Google Scholar], [Publisher]‎
[5] K. Masaaki, T. Hideki, T. Masanobu, N. Kiyohiko, Tetradentate Schiff base–oxovanadium(IV) complexes: structures and reactivities in the solid state, Coord. Chem. Rev., 2003, 237, 183-196. ‎[Crossref], [Google Scholar], [Publisher]‎
[6] J. Costamagna, J. Vargas, R. Latorre, A. Alvarado, G. Mena, Coordination compounds of copper, nickel and iron with Schiff bases derived from hydroxynaphthaldehydes and salicylaldehydes, Coord. Chem. Rev., 1992, 119, 67-88. ‎[Crossref], [Google Scholar], [Publisher]‎
[7] M. Lersch, M. Tilset, Mechanistic aspects of C− H activation by Pt complexes, Chem. Rev., 2005, 105, 2471-526. ‎[Crossref], [Google Scholar], [Publisher]‎
[8] A.H. Gatea, S.A.A. Alshamkhawy, W.S. Abdul-Hassan, Comparison study of cloud point and solvent extraction of copper by 3-chloro-2,4-pentanedione as complexing agent, J. Med. Chem. Sci., 2022, 5, 743-752. ‎[Crossref], [Google Scholar], [Publisher]‎
[9] C.R. Smith, Activated zinc dust, Synlett., 2009, 2009, 1522-1523. ‎[Crossref], [Google Scholar], [Publisher]‎
[10] L. Eddaif, A. Shaban, J. Telegdi, I. Szendro,  A piezogravimetric sensor platform for sensitive detection of lead (ii) ions in water based on calix [4] resorcinarene macrocycles: synthesis, characterization and detection, Arab. J. Chem., 2020, 13, 4448-4461. ‎[Crossref], [Google Scholar], [Publisher]‎
[11] E.R. Agharia, Infrared spectroscopic investigations of effect of strong resonance stabilized intramolecular hydrogen bonding in 1-(1-Hydroxy-2-naphthyl)-3-(phenyl or substituted phenyl)-prop-2-en-1-ones and on their complexation with some transition metals, Chem. Sci., 2015, 4, 463-477. ‎[Crossref], [Google Scholar], [Publisher]‎
[12] M.A. Farrukh, K.M. Butt, K.K. Chong, W.S. Chang, Photoluminescence emission behavior on the reduced band gap of Fe doping in CeO2-SiO2 nanocomposite and photophysical properties, J. Saudi Chem. Soc., 2019, 23, 561-575. ‎[Crossref], [Google Scholar], [Publisher]‎
[13] K.Y. Qader, R.A. Ghazi, A.M. Jabbar, K.H. Abass, S.S. Chiad, Reduce of energy gap of Cuo nano structure film by Ag doping, J. Green Eng., 2020, 10, 7387-7398. [Google Scholar], [Publisher]‎
[14] G.M. Poralan, J.E. Gambe, E.M. Alcantara, R.M. Vequizo, X-ray diffraction and infrared spectroscopy analyses on the crystallinity of engineered biological hydroxyapatite for medical application, IOP. Conf. Ser. Mater. Sci. Eng., 2015, 12028. ‎[Crossref], [Google Scholar], [Publisher]‎
[15] M. Rabiei, A. Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, G. Janusas, Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction, Nanomaterials, 2020, 10, 1-21. ‎[Crossref], [Google Scholar], [Publisher]‎
[16] N.K. Chaudhary, B. Guragain, S.K. Chaudhary, P. Mishra, Schiff base metal complex as a potential therapeutic drug in medical science: A critical review, Bibechane., 2021, 18, 214-230. ‎[Crossref], [Google Scholar], [Publisher]‎
[17] S.K. Mishra, H. Roy, A.K. Lohar, S.K. Samanta, S. Tiwari, K. Dutta, A comparative assessment of crystallite size and lattice strain in differently cast A356 aluminium alloy, IOP. Conf. Ser. Mater. Sci. Eng., 2015, 12001. ‎[Crossref], [Google Scholar], [Publisher]‎
[18] W.S. Abdul-Hassan, D. Roux, C. Bucher, S. Cobo, F. Molton, E. Saint-Aman, G. Royal, Redox-triggered folding of self-assembled coordination polymers incorporating viologen units, Chem. A Eur. J., 2018, 24, 12961-12969.  ‎[Crossref], [Google Scholar], [Publisher]‎
[19] M. Ahmadi, S. Seiffert, Coordination Geometry preference regulates the structure and dynamics of metallo-supramolecular polymer networks, Macromoleculars, 2021, 54, 1388-1400. ‎[Crossref], [Google Scholar], [Publisher]‎
[20] A.I. Adeogun, N.W. Odozi, N.O. Obiegbedi, O.S. Bello, Solvents effect on nπ* and π* transition of 9-fluorenone, Afr. J. Biotechnol., 2005, 4, 2736-2738. ‎[Pdf], [Google Scholar], [Publisher]‎
[21] X. Liu, K. Neoh, L. Zhao, E. Kang, Surface functionalization of glass and polymeric substrates via graft copolymerization of viologen in an aqueous medium, Langmuir, 2002, 18, 2914-2921. ‎[Crossref], [Google Scholar], [Publisher]‎
[22] W.S. Abdul-Hassan, E. Saint-Aman, G. Royal, C. Kahlfuss, C. Bucher, Molécules et matériaux moléculaires redox- et photo-stimulables, L'Actualité Chimique, 2018, 430, 79-84. [Google Scholar], [Publisher]‎
[23] J. Courtois, B. Wang, W.S. Abdul-Hassan, L. Almasy, M. Yan, G. Royal, Redox-responsive colloidal particles based on coordination polymers incorporating viologen units, Inorg. Chem., 2020, 59, 6100-6109. ‎[Crossref], [Google Scholar], [Publisher]‎
[24] R. Soury, M. Jabli, T.A. Saleh, W.S. Abdul-Hassan, E. Saint-Aman, F. Loiseau, C. Philouze, H. Nasri, Tetrakis (ethyl-4 (4-butyryl) oxyphenyl) porphyrinato zinc complexes with 4, 4′-bpyridin: synthesis, characterization, and its catalytic degradation of Calmagite, RSC Adv., 2018, 8, 20143- 20143-20156. ‎[Crossref], [Google Scholar], [Publisher]‎
[25] T. Sakano, F. Ito, T. Ono, O. Hirata, M. Ozawa, T. Nagamura, Synthesis and electrochromic properties of a highly water-soluble hyperbranched polymer viologen, Thin Solid Films, 2010, 519, 1458-1463. ‎[Crossref], [Google Scholar], [Publisher]‎
[26] S. Chowdhury, C. Kahlfuss, D. Frath, F. Chevallier, E. Dumont, G. Royal, E. Saint-
Aman, C. Bucher, Dynamic molecular metamorphism involving palladium-assisted dimerization of π-cation radicals, InGECOM CONCOORD 2019 May 19. ‎[Crossref], [Google Scholar], [Publisher]‎