Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Review Article

Author

1 Department of Medical Biology and Biochemistry, Faculty of Medicine Universitas Diponegoro, Semarang Indonesia Semarang-50275, Central Java, Indonesia

2 Department of Pediatrics, Diponegoro National Hospital, Semarang-50275, Central Java, Indonesia

3 Division of Pediatrics, Williambooth General Hospital, Semarang-50131, Central Java, Indonesia

10.48309/ecc.2023.418910.1691

Abstract

Nephrotic syndrome (NS) is defined as severe proteinuria that results in low ‎albumin levels, increased permeability within the glomerular filtration barrier, and functional ‎impairment. Oxidative stress and inflammation are believed to play a significant role in the ‎development of nephropathy. Reactive oxygen species, mitochondria, nitric oxide (NO) ‎synthases, and xanthine oxidases are all injured by kidney-inducing substances.‎ This study aimed to elucidate the mechanism of hypoalbuminaemia in nephrotic ‎syndrome related to oxidative stress in NS.‎ Through studies and reviews, the causes, pathophysiology, sources, and agents of ‎renal oxidative stress have been elucidated over several decades. We reviewed studies on ‎reactive oxygen species (ROS) formation and their relationship with ‎hypoalbuminaemia nephrotic syndrome. The pathogenic pathways that lead to renal fibrosis, ‎mechanisms of oxidative stress production during renal disorders, and medications that ‎specifically target oxidative stress during tubulointerstitial fibrosis and glomerulosclerosis are ‎explained in this article.‎ A distinguishing feature of NS is increased excretion of albumin and other ‎serum proteins. Therapies that target oxidative stress have the potential to treat renal fibrosis, ‎given the importance of oxidative stress in renal nephrotic syndrome. ‎

Graphical Abstract

The role of oxidative stress in hypoalbubimenia nephropathy related to Nephrotic syndrome: a critical review

Keywords

Main Subjects

[1]          S.D. Meo, P. Venditti, Evolution of the knowledge of free radicals and other oxidants, Oxid. Med. Cel. Longev., 2020, 2020. [Crossref], [Google Scholar], [Publisher]
[2]          H. Sies, D.P. Jones, Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat. Rev. Mol. Cell Biol., 2020, 21, 363-383. [Crossref], [Google Scholar], [Publisher]
[3]          M. Sharifi-Rad, N.V. Anil Kumar, P. Zucca, E. Maria Varoni, L. Dini, E. Panzarini, J. Rajkovic, P.V. Tsouh Fokou, E. Azzini, I. Peluso, A. Prakash Mishra, M. Nigam, Y. El Rayess, M. El Beyrouthy, L. Polito, M. Iriti, N. Martins, M. Martorell, A.O. Docea, W.N. Setzer, D. Calina, W.C. Cho, J. Sharifi-Rad, Lifestyle, Oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases, Front. Physiol., 2020, 2, 694. [Crossref], [Google Scholar], [Publisher]
[4]          R. Sotler, B. Poljšak, R. Dahmane, T. Jukić, D. Pavan Jukić, C. Rotim, P. Trebše, A. Starc, Prooxidant activities of antioxidants and their impact on health, Acta Clin Croat., 2019, 58, 726-736. [Crossref], [Google Scholar], [Publisher]
[5]          X. Zhang, J. Xu, H. Xiao, Y. Yao, H. Wang, Y. Ren, M. Liu, F. Wang, X. Zhong, X. Liu, B. Su, M. Cheng, L. Chai, J. Ding, S. Wang, Value of electron microscopy in the pathological diagnosis of native kidney biopsies in children, Pediatr Nephrol., 2020, 35, 2285-2295. [Crossref], [Google Scholar], [Publisher]
[6]          L.P.E.S Kresnandari, G.A.P Nilawati, I.G.A.T Windiani, I.G.A.N.S Adnyana, Soetjiningsih, B.N Mahakrishna, N.L.S.P. Murti, The quality of life in children with nephrotic syndrome at Prof IGNG Ngoerah Hospital, Denpasar, Bali. Intisari Sains Medis., 2023, 14, 401-406. [Crossref], [Google Scholar], [Publisher]
[7]          A. Trautmann, M. Vivarelli, S. Samuel, D. Gipson, A. Sinha, F. Schaefer, N. Kar Hui, O. Boyer, M.A. Saleem, L. Feltran, J. Müller-Deile, J.U. Becker, F. Cano, H. Xu, Y. Ngo Lim, W. Smoyer, I. Anochie, K. Nakanishi, E. Hodson, D. Haffner, IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome, Pediatr Nephrol., 2020, 35, 1529-1561. [Crossref], [Google Scholar], [Publisher]
[8]          A.N. Setyawati, O. Mellyana, H. Muryawan, Medication adherence in patients with nephrotic syndrome., Pak. J. Med. Health Sci., 2020, 14, 411-414. [Publisher]
[9]          Y.L. Lv, N. Guan, J. Ding, Y. Yao, H.J. Xiao, X.H. Zhong, F. Wang, X.Y. Liu, H.W. Zhang, B.G. Su, K. Xu, Spectrum of thrombotic complications and their outcomes in Chinese children with primary nephrotic syndrome, Ital. J. Pediatr., 2020, 46, 1-8. [Crossref], [Google Scholar], [Publisher]
[10]       S Lionaki, G. Liapis, J.N. Boletis, Pathogenesis and management of acute kidney injury in patients with Nephrotic syndrome due to primary glomerulopathies, Medicina, 2019, 55. [Crossref], [Google Scholar], [Publisher]
[11]       V. Tesar, T. Zima, M. Kalousová, Pathobiochemistry of nephrotic syndrome, Adv Clin Chem., 2003, 37, 173-218. [Crossref], [Google Scholar], [Publisher]
[12]       J. Tecklenborg, D. Clayton, S. Siebert, S.M. Coley, The role of the immune system in kidney disease, Clin Exp Immunol., 2018, 192, 142-150. [Crossref], [Google Scholar], [Publisher]
[13]       A. Abid, S. Shahid, M. Shakoor, A.A. Lanewala, S. Hashmi, S. Khaliq, Screening of the LAMB2, WT1, NPHS1, and NPHS2 genes in pediatric nephrotic syndrome, Front Genet., 2018, 9, 214. [Crossref], [Google Scholar], [Publisher]
[14]       H.H. Haeri, J. Eisermann, H. Schimm, A. Büscher, P. Hoyer, D. Hinderberger, Profound changes in functional structure and dynamics of serum albumin in children with nephrotic syndrome: an exploratory research study, J Med Chem., 2023, 66, 12115-12129. [Crossref], [Google Scholar], [Publisher]
[15]       T. Nishimura, O. Uemura, S. Hibino, K. Tanaka, R. Kitagata, S. Yuzawa, T. Kasagi, N. Fujita, Serum albumin level is associated with mycophenolic acid concentration in children with idiopathic nephrotic syndrome, Eur J Pediatr., 2022, 181, 1159-1165 [Crossref], [Google Scholar], [Publisher]
[16]       E.M. Yang, K.H. Yoo, Y.H. Ahn, S.H. Kim, J.W. Lee, W.Y. Chung, M.H. Cho, K.H. Kim, H.Cho, M.J. Lee, J.S. Suh, H.S. Hyun, J.M. Lee, M. H. Cho, J.H. Kim, I.S. Ha, H. Cheong, H.G. Kang, Lower albumin level and longer disease duration are risk factors of acute kidney injury in hospitalized children with nephrotic syndrome, Pediatr. Nephrol., 2021, 36, 701-709. [Crossref], [Google Scholar], [Publisher]
[17]       P.B. Soeters, R.R. Wolfe, A. Shenkin, Hypoalbuminemia: Pathogenesis and Clinical Significance, JPEN J Parenter Enteral Nutr., 2019, 43, 181-193 [Crossref], [Google Scholar], [Publisher]
[18]       A.A. Jackson, Albumin in nephrotic syndrome and oedematous malnutrition, Paediatr. Int. Child Health, 2015, 35, 77-80. [Crossref], [Google Scholar], [Publisher]
[19]       J. Meena, A. Bagga, Current Perspectives in Management of Edema in Nephrotic Syndrome, Indian J Pediatr., 2020, 87, 633-640. [Crossref], [Google Scholar], [Publisher]
[20]       P. Claudio, M. Gabriella, Nephrotic syndrome: pathophysiology and consequences, J Nephrol., 2023, 19. [Crossref], [Google Scholar], [Publisher]
[21]       B.A. Molitoris, R.M. Sandoval, S.P.S. Yadav, M.C. Wagner, Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications, Physiol Rev., 2022, 102, 1625-1667. [Crossref], [Google Scholar], [Publisher]
[22]       A. Edwards, K.R. Long, C.J. Baty, K.E. Shipman, O.A. Weisz, Modelling normal and nephrotic axial uptake of albumin and other filtered proteins along the proximal tubule, J Physiol., 2022, 600, 1933-1952. [Crossref], [Google Scholar], [Publisher]
[23]       W.D. Comper, J. Vuchkova, K.J. McCarthy, New insights into proteinuria/albuminuria, Frontiers in Physiology, 2022, 13, 991756. [Crossref], [Google Scholar], [Publisher]
[24]       S. Hatakeyama, A. Tojo, H. Satonaka, N.O. Yamada, T. Senda, T. Ishimitsu, Decreased Podocyte Vesicle Transcytosis and Albuminuria in APC C-Terminal Deficiency Mice with Puromycin-Induced Nephrotic Syndrome, Int. J. Mol. Sci., 2021, 22, 13412. [Crossref], [Google Scholar], [Publisher]
[25]       A. Matyjek, S. Literacki, S. Niemczyk, A. Rymarz, Protein energy-wasting associated with nephrotic syndrome - the comparison of metabolic pattern in severe nephrosis to different stages of chronic kidney disease, BMC Nephrol., 2020, 21, 346. [Crossref], [Google Scholar], [Publisher]
[26]       J.I. Maier, M. Rogg, M. Helmstädter, A. Sammarco, G. Walz, M. Werner, C. Schell, A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis, Cells., 2021, 10, 1509. [Crossref], [Google Scholar], [Publisher]
[27]       E.C. Ray, H. Rondon-Berrios, C.R. Boyd, T.R. Kleyman, Sodium retention and volume expansion in nephrotic syndrome: implications for hypertension, Adv Chronic Kidney Dis., 2015, 22, 179-84. [Crossref], [Google Scholar], [Publisher]
[28]       S. Agrawal, J.J. Zaritsky, A. Fornoni, W.E. Smoyer, Dyslipidaemia in nephrotic syndrome: mechanisms and treatment, Nat Rev Nephrol., 2018, 14, 57-70. [Crossref], [Google Scholar], [Publisher]
[29]       K.J. Hampson, M.L. Gay, M.E. Band, Pediatric Nephrotic Syndrome: Pharmacologic and Nutrition Management, Nutr Clin Pract., 2021, 36, 331-343. [Crossref], [Google Scholar], [Publisher]
[30]       S. Verma, P. Singh, S. Khurana, N.K. Ganguly, R. Kukreti, L. Saso, D.S. Rana, V. Taneja, V. Bhargava, Implications of oxidative stress in chronic kidney disease: a review on current concepts and therapies, Kidney Res Clin Pract., 2021, 40, 183-193. [Crossref], [Google Scholar], [Publisher]
[31]       D.M. Small, J.S. Coombes, N. Bennett, D.W. Johnson, G.C. Gobe, Oxidative stress, anti-oxidant therapies and chronic kidney disease, Nephrology (Carlton), 2012, 17, 311-21. [Crossref], [Google Scholar], [Publisher]
[32]       B.M. Lane, M. Chryst-Stangl, G. Wu, M. Shalaby, S. El Desoky, C.C. Middleton, K. Huggins, A. Sood, A. Ochoa, A.F. Malone, R. Vancini, S.E. Miller, G. Hall, S.Y. Kim, D.N. Howell, J.A. Kari, R. Gbadegesincorresponding, Steroid-sensitive nephrotic syndrome candidate gene CLVS1 regulates podocyte oxidative stress and endocytosis, JCI Insight., 2022, 7, e152102. [Crossref], [Google Scholar], [Publisher]
[33]       M.K. Foret, R. Lincoln, S. Do Carmo, A.C. Cuello, G. Cosa, Connecting the "Dots": from free radical lipid autoxidation to cell pathology and disease, Chem Rev., 2020, 120, 12757-12787. [Crossref], [Google Scholar], [Publisher]
[34]       K.N. Moorani, K.M. Khan, A. Ramzan, Infections in children with nephrotic syndrome, J Coll Physicians Surg Pak., 2003, 13, 337-9. [Crossref], [Google Scholar], [Publisher]
[35]       H.J. Forman, H. Zhang, Targeting oxidative stress in disease: promise and limitations of antioxidant therapy, Nat Rev Drug Discov., 2021, 20, 689-709. [Crossref], [Google Scholar], [Publisher]
[36]       Q. Ye, D.J. Wang, B. Lan, J.H. Mao, T-cell and B-cell repertoire diversity are selectively skewed in children with idiopathic nephrotic syndrome revealed by high-throughput sequencing, World J. Pediatr., 2023, 19, 273-282. [Crossref], [Google Scholar], [Publisher]
[37]       J.B. Kopp, H.J. Anders, K. Susztak, M.A. Podestà, G. Remuzzi, F. Hildebrandt, P. Romagnani. Podocytopathies, Nat Rev Dis Primers., 2020, 6, 68. [Crossref], [Google Scholar], [Publisher]
[38]       T. Ozeki, S. Maruyama, T. Imasawa, T. Kawaguchi, H. Kitamura, M. Kadomura, R. Katafuchi, K. Oka, H. Yokoyama, H. Sugiyama, H. Sato, Clinical manifestations of focal segmental glomerulosclerosis in Japan from the Japan Renal Biopsy Registry: age stratification and comparison with minimal change disease, Sci Rep., 2021, 11, 2602. [Crossref], [Google Scholar], [Publisher]
[39]       N. Pallet, A.A. Fernández-Ramos, M.A. Loriot, Impact of Immunosuppressive Drugs on the Metabolism of T Cells, Int Rev Cell Mol Biol., 2018, 341, 169-200. [Crossref], [Google Scholar], [Publisher]
[40]       S.J. Park, Y. Kim, C. Li, J. Suh, J. Sivapackiam, T.M. Goncalves, G. Jarad, G. Zhao,  F. Urano, V. Sharma, Y.M. Chen, Blocking CHOP-dependent TXNIP shuttling to mitochondria attenuates albuminuria and mitigates kidney injury in nephrotic syndrome, Proc Natl Acad Sci U S A., 2022, 119, e2116505119. [Crossref], [Google Scholar], [Publisher]
[41] W. Tan, R. Airik, Primary coenzyme Q10 nephropathy, a potentially treatable form of steroid-resistant nephrotic syndrome, Pediatr Nephrol., 2021, 36, 3515-3527. [Crossref], [Google Scholar], [Publisher]
[42]       G. Kleiner, E. Barca, M. Ziosi, V. Emmanuele, Y. Xu, A. Hidalgo-Gutierrez, C. Qiao, S. Tadesse, E. Area-Gomez, L.C. Lopez, C.M. Quinzii, CoQ10 supplementation rescues nephrotic syndrome through normalization of H2S oxidation pathway, Biochim Biophys Acta Mol Basis Dis., 2018, 1864, 3708-3722. [Crossref], [Google Scholar], [Publisher]
[43]       S. Drovandi, B.S. Lipska-Ziętkiewicz, F. Ozaltin, F. Emma, B. Gulhan, O. Boyer, A. Trautmann, H. Xu, Q. Shen, J. Rao, K.M. Riedhammer, U. Heemann, J. Hoefele, S.L. Stenton, A.N. Tsygin, K.H. Ng, S. Fomina, E. Benetti, M. Aurelle, L. Prikhodina, M.F. Schreuder, M. Tabatabaeifar, M. Jankowski, S. Baiko, J. Mao, C. Feng, C. Liu, S. Sun, F. Deng, X. Wang, S. Clavé, M. Stańczyk, I. Bałasz-Chmielewska, M. Fila, A.M. Durkan, T.K. Levart, I. Dursun, N. Esfandiar, D. Haas, A. Bjerre, A. Anarat, M.R. Benz, S. Talebi, N. Hooman, G. Ariceta, PodoNet Consortium; mitoNET Consortium; CCGKDD Consortium; Schaefer F. Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency, Kidney Int., 2022, 102, 604-612. [Crossref], [Google Scholar], [Publisher]
[44]       H. Sadeghi, M. Mansourian, E. Panahi kokhdan, Z. Salehpour, I. Sadati, Kazem A.-Goudarzi, A. Asfaram, A.H. Doustimotlagh, Antioxidant and protective effect of Stachys pilifera Benth against nephrotoxicity induced by cisplatin in rats, J Food Biochem., 2020, 5, e13190. [Crossref], [Google Scholar], [Publisher]
[45]       F. Hashmi, S.S. Ghazi, H. Mumtaz, M Amjad, N Zaman, S Ahmad, Role of zinc supplementation in reducing relapses in steroid sensitive nephrotic syndrome, annals of PIMS-Shaheed Zulfiqar Ali Bhutto Medical University, 2021, 17, 236-240. [Crossref], [Google Scholar], [Publisher]
[46]       O. Mellyana, R. Widajat, N. Sekarwana, Combined supplementation with α-tocopherol and vitamin C improves the blood pressure of pediatric idiopathic nephrotic syndrome patients, Clin. Nut. Exp., 2019, 23, 16-121. [Crossref], [Google Scholar], [Publisher]
[47]       H.Y. Fan, X.K. Wang, X. Li, K. Ji, S.H. Du, Y. Liu, L.L. Kong, J-c. Xu, G-q. Yang, D-q. Chen, D. Qi, Curcumin, as a pleiotropic agent, improves doxorubicin-induced nephrotic syndrome in rats, J Ethnopharmacol., 2020, 250, 112502. [Crossref], [Google Scholar], [Publisher]
[48]       J.R. Hadi, K. Tjahjono, R. Halleyantoro, P.K. Dewi, F. Fulyani, A.N. Setyawati, Combination of Nigella sativa and Curcuma xanthorrhiza Roxb, reduces hyperlipidemia in Nephrotic syndrome, J Pharm Negat Results., 2023, 1804-1812. [Crossref], [Google Scholar], [Publisher]
[49]       T. Liu, L. Zhang, D. Joo, S.C. Sun, NF-κB signaling in inflammation, Signal Transduct Target Ther., 2017, 2, 17023. [Crossref], [Google Scholar], [Publisher]
[50]       S. Watanabe, K. Hirono, T. Aizawa, K. Tsugawa, K. Joh, T. Imaizumi, H. Tanaka, Podocyte sphingomyelin phosphodiesterase acid-like 3b decreases among children with idiopathic nephrotic syndrome, Clin Exp Nephrol., 2020, 25. [Crossref], [Google Scholar], [Publisher]
[51] S. Watanabe, U. Hidenori, S Hashimoto, S. Riko, T. Aizawa, K. Tsugawa, T. Imaizumi, H. Tanaka. Sphingomyelin phosphodiesterase acid-like 3b is essential for toll-like receptor 3 signaling in human podocytes, The J. Membr. Biol., 2022, 255, 117-122. [Crossref], [Google Scholar], [Publisher]
[52]       E. Ahmadian, Y.R. Saadat, E.D. Abdolahinia, M. Bastami, M.M. Shoja, S. Zununi Vahed, M. Ardalan, The Role of cytokines in nephrotic syndrome, Mediators Inflamm, 2022, 2022, 6499668. [Crossref], [Google Scholar], [Publisher]
[53]       M. Khurana, D.M. Silverstein, Etiology and management of dyslipidemia in children with chronic kidney disease and end-stage renal disease, Pediatr Nephrol., 2015, 30, 2073-84. [Crossref], [Google Scholar], [Publisher]
[54]       O.P. Mishra, A.K. Gupta, R. Prasad, Z. Ali, R.S. Upadhyay, S.P. Mishra, N.K. Tiwary, F.S. Schaefer, Antioxidant status of children with idiopathic nephrotic syndrome, Pediatr Nephrol., 2011, 26, 251-6. [Crossref], [Google Scholar], [Publisher]
[55]       K. Udwan, G. Brideau, M. Fila, A. Edwards, B. Vogt, A. Doucet, Oxidative stress and nuclear factor κB (NF-κB) increase peritoneal filtration and contribute to ascites formation in nephrotic syndrome, J. Biol. Chem., 2016, 291, 11105-13. [Crossref], [Google Scholar], [Publisher]
[56]       B.E Drummond, W.S. Ercanbrack, Drand R.A. Wingert, Modeling Podocyte Ontogeny and Podocytopathies with the Zebrafish, J Dev Biol, 2023, 11. [Crossref], [Google Scholar], [Publisher]
[57] L. Butt, D. Unnersjö-Jess, M. Höhne, A. Edwards, J. Binz-Lotter, D. Reilly, R. Hahnfeldt, V. Ziegler, K. Fremter, M.M. Rinschen, M. Helmstädter, L.K. Ebert, H. Castrop, M.J. Hackl, G. Walz, P.T. Brinkkoetter, M.C. Liebau, K. Tory, P.F. Hoyer, B.B. Beck, H. Brismar, H. Blom, B. Schermer, T. Benzing, A molecular mechanism explaining albuminuria in kidney disease, Nat. Metab., 2020, 2, 461-474. [Crossref], [Google Scholar], [Publisher]
[58]       Y.T. Zhu, C. Wan, J.H. Lin, H.P. Hammes, C. Zhang, Mitochondrial oxidative stress and cell death in podocytopathies, Biomolecules, 2022, 12, 403. [Crossref], [Google Scholar], [Publisher]
[59]       K. Jomova, M. Valko, Advances in metal-induced oxidative stress and human disease. Toxicology, 2011, 283, 65-87. [Crossref], [Google Scholar], [Publisher]
[60]       J. Dwivedi, P.D. Sarkar, Interrelationship of oxidative stress, homocysteine, lipoprotein (a), copper and zinc in Nephrotic syndrome: recent advances: risk for cardiac diseases, Pharmacologyonline, 2009, 2, 605-5. [Crossref], [Google Scholar], [Publisher]
[61]       S.F. Rapa, B.R. Di Iorio, P. Campiglia, A. Heidland, S. Marzocco, Inflammation and oxidative stress in chronic kidney disease-potential therapeutic role of minerals, vitamins and plant-derived metabolites, Int J Mol Sci., 2019, 21, 263. [Crossref], [Google Scholar], [Publisher]
[62]       W. Hamik, D. Hilmanto, S. Rahayuningsih, Relationship between serum zinc and homocysteine in children with nephrotic syndrome, PI., 2019, 59, 98-03. [Crossref], [Google Scholar], [Publisher]
[63]       O. Mellyana, E. Dharmana, H. Susanto, N. Sekarwana, Effects of combined supplementation of vitamins C and E on the oxidative modification of low-density lipoprotein, soluble form of CD36, soluble vascular cell adhesion molecule-1, and nitrite/nitrate oxide levels in idiopathic nephrotic syndrome, Biomark. Genom. Med., 2015, 7, 125-130. [Crossref], [Google Scholar], [Publisher]
[64]       X. Liu, W. Cao, J. Qi, Q. Li, M. Zhao, Z. Chen, J. Zhu, Z. Huang, L. Wu, B. Zhang, Y. Yuan, C. Xing, Leonurine ameliorates adriamycin-induced podocyte injury via suppression of oxidative stress, Free Radic Res., 2018, 52, 952-960. [Crossref], [Google Scholar], [Publisher]
[65]       X.Y. Xiang, T. Liu, Y. Wu, X.-S. Jiang, J.-L. He, X.-M. Chen, X.-G. Du, Berberine alleviates palmitic acid‑induced podocyte apoptosis by reducing reactive oxygen species‑mediated endoplasmic reticulum stress, Mol Med Rep., 2021, 23, 3. [Crossref], [Google Scholar], [Publisher]
[66]       Y. Wan, S. Wang, K. Chen, L. Liu, X. Wang, B. Zhang, L. Hu, S. Liu, T. Zhao, H. Qi, High-sulfated derivative of polysaccharide from Ulva pertusa improves Adriamycin-induced nephrotic syndrome by suppressing oxidative stress, Food Funct., 2023. [Crossref], [Google Scholar], [Publisher]
[67]       S.M. Yang, K.F. Hua, Y.C. Lin, A. Chen, J.M. Chang, L.K. Chao, C.L. Ho, S.M. Ka. Citral is renoprotective for focal segmental glomerulosclerosis by inhibiting oxidative stress and apoptosis and activating Nrf2 pathway in mice, PLoS One., 2013, 8, e74871. [Crossref], [Google Scholar], [Publisher]
[68]       G. Liu, L. He, Epigallocatechin-3-Gallate Attenuates Adriamycin-Induced Focal Segmental Glomerulosclerosis via Suppression of Oxidant Stress and Apoptosis by Targeting Hypoxia-Inducible Factor-1α/ Angiopoietin-Like 4 Pathway, Pharmacology, 2019, 103, 303-314. [Crossref], [Google Scholar], [Publisher]
[69]       S.M. Yang, Y.L. Chan, K.F. Hua, J.M. Chang, H.L. Chen, Y.J. Tsai, S.H. Wu, Y.-F. Wang, C.-L. Tsai, A. Chen, S.M. Ka, Osthole improves an accelerated focal segmental glomerulosclerosis model in the early stage by activating the Nrf2 antioxidant pathway and subsequently inhibiting NF-κB-mediated COX-2 expression and apoptosis, Free Radic. Biol. Med., 2014, 73, 260-269. [Crossref], [Google Scholar], [Publisher]