Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam

10.48309/ecc.2024.422554.1715

Abstract

Cytotoxic metal complexes have drawn significant attention from biochemists nowadays. These bioactive coordination compounds of potential ligands with biological functional groups and suitable metal ions have garnered considerable interest. In this study, hybrid azomethine thiourea ligands and their copper(II) complexes were prepared and studied using modern physicochemical techniques. The spectral data have shown that the coordination was carried out through N, N, O, and S atoms. One unpaired electron d9 configuration and the distorted square-planar environment were suggested for the synthetic copper(II) complexes. The electrochemical properties of the Schiff base thiourea copper(II) complexes were investigated. The antioxidant activities of all azomethine thiourea copper(II) complexes were identified by DPPH method using curcumin as a positive control. In vitro cytotoxic activity against human cancer cell lines, hepatocellular carcinoma (HepG-2) and human lung adenocarcinoma (A549) of the received copper(II) complexes was examined. The obtained results have indicated that [Cu(II)LCl] possessed the best cytotoxicity for HepG-2 and A549 with 50% inhibitory concentration (IC50) = 2.41 and 1.88 µg/ml, respectively.

Graphical Abstract

Synthesis, spectral characterization and biological studies of copper(II) complexes bearing azomethine thiourea ligands

Keywords

Main Subjects

[1] R.K. Das,  D. Mukherjee,  S. Reja, K. Sarkar, Pyridinylmethylidene) Propane-1, 3-Diamine Compound: Synthesis, Characterization, and Its Application toward Biocidal Activity, Journal of Applied Organometallic Chemistry, 2023, 3, 73-85.  [Crossref], [Google Scholar], [Publisher]
[2] N. Ayad Abd AL-Qadir, N. Dheyaa Shaalan, Synthesis, Characterization, and Biological Activity of New Metal Ion Complexes with Schiff Base (Z)-3((E)-2-Hydroxybenzylidene) Hydrazineylidene) Indolin-2-One, Journal of Medicinal and Chemical Sciences, 20226, 1660-1674. [Crossref],  [Publisher]
[3] N. Hasan, M.A.H. Shallal, H.A. Mubarak, M.M. Karhib, A.S. Naje, Synthesis, Spectral, Cancer Inhibitory Activity and Antimicrobial Studies of Cobalt (II) and Nickel (II) Metal Complexes Containing Azo Derived from 2-Amino Benzimidazole,  Journal of Medicinal and Chemical Sciences, 2023, 6, 1885. [Crossref], [Google Scholar], [Publisher]
[4] M.S. Mohammed, I.A. Flifel, Journal of Medicinal and Chemical Sciences, 2022, 5, 468;. [Crossref], [Pdf], [Publisher]
[5] A. Saeed, M.N. Mustafa, M. Zain-ul-Abideen, G. Shabir, M.F. Erben, U. Flörke, Current developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3-(substituted) thioureas: advances Continue…. Journal of Sulfur Chemistry2019, 40, 312-350. [Crossref], [Google Scholar], [Publisher]
[6] S. Akhter, S. Ullah, S. Yousuf, H. Siddiqui, M.I. Choudhary, Synthesis, crystal structure and Hirshfeld Surface analysis of benzamide derivatives of thiourea as potent inhibitors of α-glucosidase in-vitro, Bioorganic Chemistry, 2021,  107, 104531. [Crossref], [Google Scholar], [Publisher]
[7] S. Naz, M. Zahoor, M.N. Umar,  S. Alghamdi,  M.U.K. Sahibzada, W. UlBari, Synthesis, characterization, and pharmacological evaluation of thiourea derivatives, Open Chemistry, 2020,  18, 764-777. [Crossref], [Google Scholar], [Publisher]
[8] Z. Zhu, Q. Mi, Substituted thiourea as versatile ligands for crystallization control and surface passivation of tin-based perovskite, Cell Reports Physical Science 2022, 3, 100690. [Crossref], [Google Scholar], [Publisher]
[9] S.J. Zhu, J.F. Li, Design, synthesis and herbicidal activities of p-menth-3-en-1-amine thiourea derivatives, Natural Product Research, 2022,  36, 3673-3680. [Crossref], [Google Scholar], [Publisher]
[10] A. Saeed, G. Saddique, P.A. Channar, F.A. Larik, Q. Abbas, M. Hassan, H. Raza,  T.A. Fattah, S.Y. Seo, Synthesis of sulfadiazinyl acyl/aryl thiourea derivatives as calf intestinal alkaline phosphatase inhibitors, pharmacokinetic properties, lead optimization, Lineweaver-Burk plot evaluation and binding analysis, Bioorganic & Medicinal Chemistry, 2018,  26, 3707-3715. [Crossref], [Google Scholar], [Publisher]
[11] X. Zhang, X. Du,  J. Song, J. Huang, Synthesis, crystal structure, hydrogen bonding interactions analysis of novel acyl thiourea derivative, Journal of Physical Organic Chemistry, 2020,  33, 4016. [Crossref], [Google Scholar], [Publisher]
[12] Y. Zhang, X. Zhang, L. Qiao, Z. Ding, X. Hang, B. Qin,  J. Song, J. Huang, Synthesis, structures, drug-likeness, in vitro evaluation and in silico docking on novel N-benzoyl-N′-phenyl thiourea derivatives, Journal of Molecular Structure, 2019,  1176, 335-345. [Crossref], [Google Scholar], [Publisher]
[13] H. Ali, F. Iftikhar, S. Shafi, H. Siddiqui, I.A. Khan,  M.I. Choudhary, S.G. Musharraf, Thiourea derivatives induce fetal hemoglobin production in-vitro: A new class of potential therapeutic agents for β-thalassemia, European journal of pharmacology2019, 855, 285-293. [Crossref], [Google Scholar], [Publisher]
[14] B. Bano, K.M. Khan, A. Lodhi, U. Salar, F. Begum, M. Ali, M. Taha, S. Perveen, Synthesis, in vitro urease inhibitory activity, and molecular docking studies of thiourea and urea derivatives, Bioorganic Chemistry2018, 80, 129-144. [Crossref], [Google Scholar], [Publisher]
[15] D.Q. Huong, M. Van Bay, P.C. Nam, Antioxidant activity of thiourea derivatives: An experimental and theoretical study, Journal of Molecular Liquids2021, 340, 117149. [Crossref], [Google Scholar], [Publisher]
[16] C. Boulechfar, H. Ferkous,  A. Delimi, A. Djedouani,  A. Kahlouche, A. Boublia, A.S. Darwish, T. Lemaoui, R. Verma, Y. Benguerba, Schiff bases and their metal complexes: a review on the history, synthesis, and applications, Inorganic Chemistry Communications, 2023,  110451. [Crossref], [Google Scholar], [Publisher]
[17] A. Soroceanu, A. Bargan, Advanced and biomedical applications of Schiff-base ligands and their metal complexes: A review, Crystals, 2022,  12, 1436. [Crossref], [Google Scholar], [Publisher]
[18] A.L. Berhanu, I. Mohiuddin A.K. Malik, J.S. Aulakh, V. Kumar, K.H. Kim, A review of the applications of Schiff bases as optical chemical sensors, TrAC Trends in Analytical Chemistry, 2019,  116, 74-91. [Crossref], [Google Scholar], [Publisher]
[19] Â. de Fátima, C. de Paula Pereira, C.R.S.D.G. Olímpio, B.G. de Freitas Oliveira, L.L. Franco, P.H.C. da Silva, Schiff bases and their metal complexes as urease inhibitors–a brief review, Journal of advanced research, 2018,  13, 113-126. [Crossref], [Google Scholar], [Publisher]
[20] W. Fang, Z. Cao,  Q. Liu, Y. Chu,  H. Zhu, W. Zhou, J. Yang, A novel star-shaped Schiff base compound: synthesis, properties and application in w-LEDs, Results in Optics, 2022,  7, 100228. [Crossref], [Google Scholar], [Publisher]
[21] S.C. Xu, S.J. Zhu, J. Wang, L.W. Bi, Y.X. Chen, Y.J. Lu, Y. Gu, Z.D. Zhao, Design, synthesis and evaluation of novel cis-p-menthane type Schiff base compounds as effective herbicides, Chinese Chemical Letters2017, 28, 1509-1513. [Crossref], [Google Scholar], [Publisher]
[22] C.M. da Silva, M.M. Silva, F.S. Reis, A.L.T. Ruiz, J.E. de Carvalho, J.C. Santos, I.M. Figueiredo, R.B.  Alves, L.V. Modolo, Â. de Fátima, Studies on free radical scavenging, cancer cell antiproliferation, and calf thymus DNA interaction of Schiff bases, Journal of Photochemistry and Photobiology B: Biology2017, 172, 129-138. [Crossref], [Google Scholar], [Publisher]
[23] K. Sztanke, A. Maziarka, A. Osinka, M. Sztanke, An insight into synthetic Schiff bases revealing antiproliferative activities in vitro, Bioorganic & Medicinal Chemistry, 2013,  21, 3648-3666. [Crossref], [Google Scholar], [Publisher]
[24] M. Mesbah, T. Douadi, F. Sahli,  S. Issaadi, S. Boukazoula, S. Chafaa, Synthesis, characterization, spectroscopic studies and antimicrobial activity of three new Schiff bases derived from Heterocyclic moiety, Journal of Molecular Structure, 2018,  1151, 41-48. [Crossref], [Google Scholar], [Publisher]
[25] A.M. Mansour, O.R. Shehab, Spectroscopic and TDDFT studies of N-phenyl-N′-(3-triazolyl) thiourea) compounds with transition metal ions, Arabian Journal of Chemistry, 2021,  14, 102932. [Crossref], [Google Scholar], [Publisher]
[26] H.A. Mohammed, U.M. Ali, Q.R. Abdullah, Synthesis, Characterization, Biological Activity, and Scanning Electron Microscopy Studies of Schiff Base Binuclear Complexes Co (II), Cu (II), Cd (II), and Pt (II) Derivative from Tolidine with Salicylaldehyde, Chemical Methodologies,  2023, 7, 594, 1678. [Crossref], [Google Scholar], [Publisher]
[27] K.F. Mohammed, H.A. Hasan, Synthesis, chemical and biological activity Studies of azo-Schiff base ligand and its metal complexes, Chemical Methodologies 2022, 12, 905-913. [Crossref], [Google Scholar], [Publisher]
[28] T. Yeşilkaynak, H. Muslu, C. Özpınar , F.M. Emen, R.E. Demirdöğen, N. Külcü, Novel thiourea derivative and its complexes: synthesis, characterization, DFT computations, thermal and electrochemical behavior, antioxidant and antitumor activities, Journal of Molecular Structure2017, 1142, 185-193. [Crossref], [Google Scholar], [Publisher]
[29] J.C. Gomez, A. Hagenbach, U.I.M. Gerling-Driessen, B. Koksch, N. Beindorff, W. Brenner, U. Abram,  Thiourea derivatives as chelating agents for bioconjugation of rhenium and technetium, Dalton Transactions2017, 46,  14602-14611. [Crossref], [Google Scholar], [Publisher]
[30] M.S. More,  P.G. Joshi, Y.K. Mishra, P.K. Khanna, Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review, Materials Today Chemistry, 2019, 14, 100195. [Crossref], [Google Scholar], [Publisher]
[31] P. Ghanghas, A. Choudhary, D. Kumar, K. Poonia, Coordination metal complexes with Schiff bases: Useful pharmacophores with comprehensive biological applications, Inorganic Chemistry Communications, 2021, 130, 108710. [Crossref], [Google Scholar], [Publisher]
[32] L. Shadap, S. Diamai, J. L. Tyagi, K. M. Poluri, W. Kaminsky, M.R. Kollipara, Synthesis, biological evaluation and colorimetric sensing studies of platinum group metal complexes comprising pyrazine based thiourea derivatives, Journal of Organometallic Chemistry, 2019, 897, 207-216. [Crossref], [Google Scholar], [Publisher]
[33] M. Iliş, M. Micutz, V. Cîrcu,  Luminescent palladium (II) metallomesogens based on cyclometalated Schiff bases and N-benzoyl thiourea derivatives as co-ligands, Journal of Organometallic Chemistry, 2017,  836, 81-89. [Crossref], [Google Scholar], [Publisher]
[34] H.J. Zhang, X. Qin, K. Liu, D.D. Zhu, X.M. Wang, H.L. Zhu, Synthesis, antibacterial activities and molecular docking studies of Schiff bases derived from N-(2/4-benzaldehyde-amino) phenyl-N′-phenyl-thiourea, Bioorganic & medicinal chemistry, 2011,  19, 5708-5715. [Crossref], [Google Scholar], [Publisher]
[35] Q.T. Nguyen, P.N. Pham Thi, V.T. Nguyen, Synthesis, characterization, and in vitro cytotoxicity of unsymmetrical tetradentate schiff base Cu(II) and Fe(III) complexes, Bioinorganic Chemistry and Applications, 2021, 2021 (Article ID 6696344), 1-10. [Crossref], [Google Scholar], [Publisher]
[36] A.M. Abu‐Dief, H.M. El‐Sagher, M.R. Shehata, Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu (II), Pd (II), Zn (II) and Cr (III) complexes, Applied Organometallic Chemistry, 2019,  33,  4943. [Crossref], [Google Scholar], [Publisher]
[37] E. Ulukaya,  F. Ozdikicioglu, A.Y. Oral, M. Demirci, The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested, Toxicology in vitro, 2008,  22, 232-239. [Crossref], [Google Scholar], [Publisher]
[38] Q.T. Nguyen, P.N. Pham Thi, N. Van Tuyen, Synthesis, spectral characterization, and in vitro cytotoxicity of some Fe (III) complexes bearing unsymmetrical salen-type ligands derived from 2-hydroxynaphthaldehyde and substituted salicylaldehydes, Journal of Chemistry, 2021,  2021, 1-9. [Crossref], [Google Scholar], [Publisher]
[39] V.Z. Mota, G.S.G. de Carvalho, P.P. Corbi, F.R.G. Bergamini, A.L.B. Formiga, R. Diniz, M.C.R. Freitas, A.D. da Silva, A. Cuin,  Crystal structure and theoretical studies of the keto-enol isomerism of N, N′-bis (salicylidene)-o-phenylenediamine (salophen), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 99, 110. [Crossref], [Google Scholar], [Publisher]
[40] L.A Siddig, M.A. Khasawneh, A. Samadi, H. Saadeh, N. Abutaha, M.A. Wadaan, Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents, Open Chemistry, 2021, 19, 1062-1073. [Crossref], [Google Scholar], [Publisher]
[41] D.G. Palke, Biological Studies of Transition Metal Complexes of DHA Schiff Bases of Aromatic Amine, Journal of Applied Organometallic Chemistry, 2022,  2, 81. [Crossref], [Google Scholar], [Publisher]
 [42]. S. Menati, A. Azadbakht, A. Taeb, A. Kakanejadifard, H.R. Khavasi, Synthesis, characterization and electrochemical study of synthesis of a new Schiff base (H2cdditbutsalen) ligand and their two asymmetric Schiff base complexes of Ni (II) and Cu (II) with NN′ OS coordination spheres. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy2012, 97, 1033-1040. [Crossref], [Google Scholar], [Publisher]
[43] W. Benabid, K. Ouari, S. Bendia, R. Bourzami, M. Ait-Ali, AIi, Crystal structure, spectroscopic studies, DFT calculations, cyclic voltammetry and biological activity of a copper (II) Schiff base complex, Journal of Molecular Structure2020, 1203,  127313. [Crossref], [Google Scholar], [Publisher]
[44] A.A. Al-Shamry, M.M. Khalaf, H.M.A. El-Lateef, T.A. Yousef, G.G. Mohamed, K.M.K. El-Deen, M. Gouda, A.M. Abu-Dief,  Development of new azomethine metal chelates derived from isatin: DFT and pharmaceutical studies, Materials, 2023, 16, 83. [Crossref], [Google Scholar], [Publisher]
[45] V.P. Singh, S. Singh, D.P. Singh, K. Tiwari, M. Mishra, Synthesis, spectroscopic (electronic, IR, NMR and ESR) and theoretical studies of transition metal complexes with some unsymmetrical Schiff bases, Journal of Molecular Structure2014, 1058, 71-78. [Crossref], [Google Scholar], [Publisher]
[46] A.M.A. Alaghaz, Y.A. Ammar, H.A. Bayoumi, S.A. Aldhlmani,  Synthesis, spectral characterization, thermal analysis, molecular modeling and antimicrobial activity of new potentially N2O2 azo-dye Schiff base complexes, Journal of Molecular Structure2014, 1074, 359-375 [Crossref], [Google Scholar], [Publisher]
[47] G. Ramesh, S. Daravath, M. Swathi, V. Sumalatha, D.S. Shankar,  Investigation on Co (II), Ni (II), Cu (II) and Zn (II) complexes derived from quadridentate salen-type Schiff base: structural characterization, DNA interactions, antioxidant proficiency and biological evaluation, Chemical Data Collections, 2020, 28, 100434. [Crossref], [Google Scholar], [Publisher]