Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Doctoral Program of Medical Science, Faculty of Medicine, Airlangga University, Surabaya, 60132, Indonesia

2 Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Airlangga University, Surabaya, 60132, Indonesia

3 Faculty of Veterinary Medicine, Airlangga University, Surabaya, 60132, Indonesia

4 Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Penang

10.48309/ecc.2024.424350.1726

Abstract

Inflammation is often the key element that results in dysregulation of one or more of the biochemical pathways responsible for the pathological development of disease. Uncontrolled acute inflammation can become chronic, contributing to various chronic inflammatory diseases such as cardiovascular disease, diabetes, arthritis, and cancer. Primary stimulation is generally elicited by proinflammatory cytokines such as interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Petiveria alliacea L. has been reported pharmacologically to have anti-microbial, anti-cancer, immunomodulatory, analgesic, and anti-inflammatory activities. The purpose of this study was to determine the Petiveria alliacea potential as an anti-inflammatory by inhibiting proinflammatory cytokine target proteins (IL1R and TNFAR) in silico. The test compounds are selected compounds obtained from the UPLC-QToF-MS/MS results of Petiveria alliacea leaf extract and the reference results from Google, which are compounds that have been widely studied. Prior to docking, the downloaded compounds were prepared using PyRx 0.8, and then docked with both receptors using AutoDock Vina, and visualization of the docking results was carried out using Biovia Discovery Studio 2019. The docking results showed that the Myricitrin compound had a lower binding affinity value than the IL1R receptor inhibitor, which indicated that it had better activity compared to the inhibitor as well as the isoarborinol acetate compound against TNFAR. Therefore, the conclusion of this study is that the 70% ethanol extract of Petiveria alliacea leaves has anti-inflammatory activity by inhibiting pro-inflammatory cytokines (IL1R and TNFAR). 

Graphical Abstract

Metabolite profiling based on UPLC-QTOF-MS/MS and evaluation of Petiveria alliacea leaves extract as an in silico anti-inflammatory

Keywords

Main Subjects

[1] (a) L.F. García, Immune response, inflammation, the clinical spectrum of COVID-19, Frontiers in immunology, 2020, 11, 1441. [Crossref], [Google Scholar], [Publisher], (b) A. Ajala, A. Zairu, G. Shallangwa, S. Abechi, In-silico design, molecular docking and pharmacokinetics studies of some tacrine derivatives as anti-alzheimer agents: theoretical investigation, Advanced Journal of Chemistry, Section A, 2022, 5, 59-69.    [Crossref], [Google Scholar], [Publisher], (c) F.R. Shakil Ahmed, M.J. Sultana, A. Sultana, M.F. Alom, Study of anti-thrombocyte activity of cassia fistula seeds extract and it’s total phenolic and flavonoid content, in vitro Antioxidant and anti-inflammatory activities, Asian Journal of Green Chemistry, 2023, 7, 258-268. [Crossref], [Pdf], [Publisher], (d) F. Akbarnejad, Dermatology benefits of punica granatum: a review of the potential benefits of punica granatum in skin disorders, Asian Journal of Green Chemistry, 2023, 7, 208-222. [Crossref], [Google Scholar], [Publisher], (e) N. Kalani, S.R. Mousavi, K. Eghbal, A. Kazeminezhad, Fifteen pearls in treating lumbar disk herniation: a narrative study, Eurasian Journal of Science and Technology, 2023, 3, 55-66. [Crossref], [Pdf], [Publisher]
[2] (a) P.D. Gupta, T.J. Birdi, Development of botanicals to combat antibiotic resistance, Journal of Ayurveda and integrative medicine, 2017, 8,  266-275. [Crossref], [Google Scholar], [Publisher], (b) P.A. Kalvanagh, Y. Adyani Kalvanagh, Investigating the relationship between A/T 251 polymorphism of IL-8 gene and cancer recurrence after lumpectomy, Eurasian Journal of Science and Technology, 2023, 3, 178-189. [Crossref], [Pdf], [Publisher], (c) M. Rezaei, R. Azhough, Efficacy of diosmin on post-hemorrhoidectomy pain: a systematic review of clinical trials, Eurasian Journal of Science and Technology, 2023, 3, 141-146. [Crossref], [Pdf], [Publisher], (d) A. Saedi, S. Saedi, M.M. Ghaemi, M. Milani Fard, A review of epidemiological study of covid-19 and risk factors, Eurasian Journal of Science and Technology, 2022, 2, 224-232. [Crossref], [Pdf], [Publisher], (e) G. Sharma, S.B. Sharma, Synthetic impatienol analogues as potential cyclooxygenase-2 inhibitors: a preliminary study, Journal of Applied Organometallic Chemistry, 2021, 1, 66-75. [Crossref], [Google Scholar], [Publisher]
[3] P. Libby, Inflammatory mechanisms: the molecular basis of inflammation and disease, Nutrition reviews, 2007, 65,  140-146. [Crossref], [Google Scholar], [Publisher]
[4] L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, L. Zhao, Inflammatory responses and inflammation-associated diseases in organs, Oncotarget, 2018, 9, 7204. [Crossref], [Google Scholar], [Publisher]
[5] V. Sharma, R.K. Tiwari, S.S. Shukla, R.K. Pandey, Current and future molecular mechanism in inflammation and arthritis, Journal of Pharmacopuncture, 2020, 23, 54. [Crossref], [Google Scholar], [Publisher]
[6] S. Kany, J.T. Vollrath, B. Relja, Cytokines in inflammatory disease, International journal of molecular sciences, 2019, 20, 6008. [Crossref], [Google Scholar], [Publisher]
[7] A. Ochoa Pacheco, J. Marín Morán, Z. González Giro, A. Hidalgo Rodríguez, R.J. Mujawimana, K. Tamayo González, S. Sariego Frómeta, In vitro antimicrobial activity of total extracts of the leaves of Petiveria alliacea L.(Anamu), Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 241-250. [Crossref], [Google Scholar], [Publisher]
[8] A. Mustika, N. Fatimah, G.M. Sari, The self-nanoemulsifying drug delivery system of Petiveria alliacea extract reduced the homeostatic model assessment-insulin resistance value, interleukin-6, and tumor necrosis factor-α level in diabetic rat models, Veterinary World, 2021, 14, 3229. [Crossref], [Google Scholar], [Publisher]
[9] S. Oguntimehin, E. Ajaiyeoba, O. Ogbole, H. Dada-Adegbola, B. Oluremi, & A. Adeniji, Evaluation of selected Nigerian medicinal plants for antioxidant, antimicrobial and cytotoxic activities, Research square, 2021 [Crossref], [Google Scholar], [Publisher]
[10] A.O. Olomieja, I.O. Olanrewaju, J.I. Ayo-Ajayi, G.E. Jolayemi, U.O. Daniel, R.C. Mordi, Antimicrobial and antioxidant properties of petiveria alliacea, In IOP Conference Series: Earth and Environmental Science, 2021, 655, 12015. [Crossref], [Google Scholar], [Publisher]
[11] B. Ma'arif, F.A. Muslikh, D. Amalia, A. Mahardiani, L.A. Muchlasi, P. Riwanti, M. Agil, Metabolite profiling of the environmental-controlled growth of Marsilea crenata Presl, and its in vitro and in silico antineuroinflammatory properties, Borneo Journal of Pharmacy, 2022, 5, 209-228. [Crossref], [Google Scholar], [Publisher]
[12]. J.F. Hernández, C.P. Urueña, T.A. Sandoval, M.C. Cifuentes, L. Formentini, J.M. Cuezva, S. Fiorentino, A cytotoxic Petiveria alliacea dry extract induces ATP depletion and decreases β-F1-ATPase expression in breast cancer cells and promotes survival in tumor-bearing mice, Revista Brasileira de Farmacognosia, 2017, 27, 306-314. [Crossref], [Google Scholar], [Publisher]
[13] T.C. Alves, E. Rodrigues, J.H. Lago, C.M. Prado, C.E.N. Girardi, D.C. Hipólide, Petiveria alliacea, a plant used in Afro-Brazilian smoke rituals, triggers pulmonary inflammation in rats, Revista Brasileira de Farmacognosia, 2019, 29, 656-664. [Crossref],[Google Scholar], [Publisher]
[14] A. Luqman, V.D. Kharisma, R.A. Ruiz, F. Gotz, In silico and in vitro study of trace amines (TA) and dopamine (DOP) interaction with human alpha 1-adrenergic receptor and the bacterial adrenergic receptor QseC, Cell Physiol Biochem, 2020, 54, 888-898. [Crossref], [Google Scholar], [Publisher]
[15] H. Onyango, P. Odhiambo, D. Angwenyi, P. Okoth, In silico identification of new anti-SARS-CoV-2 main protease (M pro) molecules with pharmacokinetic properties from natural sources using molecular dynamics (MD) simulations and hierarchical virtual screening, Journal of Tropical Medicine, 2022, 2022. [Crossref], [Google Scholar], [Publisher]
[16]. P. Riwanti, M.S. Arifin, F.A. Muslikh, D. Amalia, I. Abada, A.P. Aditama, B. Ma’arif, Effect of Chrysophyllum cainito L. leaves on bone formation in vivo and in silico, Tropical Journal of Natural Product Research, 2021, 5, 260-264. [Crossref], [Google Scholar], [Publisher]
[17] M.H. Widyananda, S.T. Wicaksono, K. Rahmawati, S. Puspitarini, S.M. Ulfa, Y.D. Jatmiko, N. Widodo, A potential anticancer mechanism of finger root (Boesenbergia rotunda) extracts against a breast cancer cell line, Scientifica, 2022, 2022. [Crossref], [Google Scholar], [Publisher]
[18] B. Ma'arif, M. Aminullah, N.L.  Saidah, F.A. Muslikh, A. Rahmawati, Y.Y.A. Indrawijaya, M.M. Taek, Prediction of antiosteoporosis activity of thirty-nine phytoestrogen compounds in estrogen receptor-dependent manner through in silico approach, Tropical Journal of Natural Product Research, 2021, 5, 1727-1734. [Crossref], [Google Scholar], [Publisher]
[19] F.A. Muslikh, R.R. Pratama, B. Ma'arif, N. Purwitasari, Studi In Silico Senyawa Flavonoid dalam Mengambat RNA-dependent RNA polymerase (RdRp) sebagai Antivirus COVID-19, Journal of Islamic Pharmacy, 2023, 8, 49-55. [Crossref], [Google Scholar], [Publisher]
[20] B. Ma’arif, F.A. Muslikh, D.A.P. Fihuda, S. Syarifuddin, B. Fauziyah, December. Prediction of compounds from 96% ethanol extract of Marsilea crenata Presl, leaves in increasing estrogen receptor-α activation, In Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR), 2021,   1, 67-76. [Crossref], [Google Scholar], [Publisher]
[21] B. Ma’arif, R.R. Samudra, F.A. Muslikh, T.J.D. Dewi, L.A. Muchlasi, December. Antineuroinflammatory properties of compounds from ethyl acetate fraction of Marsilea crenata C. Presl, against toll-like receptor 2 (3A7B) in silico, In Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR) , 2022, 2, 8-20. [Crossref], [Google Scholar], [Publisher]
[22] T.L. Wargasetia, H. Ratnawati, N. Widodo, M.H. Widyananda, Bioinformatics study of sea cucumber peptides as antibreast cancer through inhibiting the activity of overexpressed protein (EGFR, PI3K, AKT1, and CDK4), Cancer Informatics, 2021, 20, 11769351211031864. [Crossref], [Google Scholar], [Publisher]
[23] B. Ma'arif, F.A. Muslikh, W. Anggraini, M.M. Taek, H. Laswati, M. Agil, In vitro anti-neuroinflammatory effect of genistein (4', 5, 7-trihydroxyisoflavone) on microglia HMC3 cell line, and in silico evaluation of its interaction with estrogen receptor-β, International Journal of Applied Pharmaceutics, 2021, 13, 183-187. [Crossref], [Google Scholar], [Publisher]
[24] B. Ma’arif, F.A. Muslikh, L.A. Najib, R.R.D. Atmaja, M.R. Dianti, December, In silico antiosteoporosis activity of 96% ethanol extract of chrysophyllum cainito L. leaves, In Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR), 2021,   1, 61-66. [Crossref], [Google Scholar], [Publisher]
[25] J. Lu, A. Muhmood, W. Czekała, J. Mazurkiewicz, J. Dach, R. Dong, Untargeted metabolite profiling for screening bioactive compounds in digestate of manure under anaerobic digestion, Water, 2019, 11, 2420. [Crossref], [Google Scholar], [Publisher]
[26] N.J. Simpson, Solid-phase extraction: principles, techniques, and applications, CRC press, 2000. [Google Scholar], [Publisher]
[27] A.P.R. Aditama, B. Ma'arif,  D.M. Mirza, H. Laswati, M. Agil, In vitro and in silico analysis on the bone formation activity of N-hexane fraction of Semanggi (Marsilea crenata Presl.), Systematic Reviews in Pharmacy2020, 11, 837-849. [Crossref], [Google Scholar], [Publisher]
[28] A.V. Anand David, R. Arulmoli, S. Parasuraman, Overviews of biological importance of quercetin: a bioactive flavonoid, Pharmacognosy reviews, 2016, 10, 84–89. [Crossref], [Google Scholar], [Publisher]
[29] K.S. Park, Y. Chong, M.K. Kim, Myricetin: biological activity related to human health, Appl Biol Chem, 2016, 59, 259–269. [Crossref], [Google Scholar], [Publisher]
[30] D.K. Semwal, R.B. Semwal, S. Combrinck, A. Viljoen, Myricetin: a dietary molecule with diverse biological activities, Nutrients, 2016, 8, 90. [Crossref], [Google Scholar], [Publisher]
[31] L.M. Zavala-Ocampo, E. Aguirre-Hernández, N. Pérez-Hernández, G. Rivera, L.A. Marchat, E. Ramírez-Moreno, Antiamoebic activity of petiveria alliacea leaves and their main component, isoarborinol, Journal of microbiology and biotechnology, 2017, 27, 1401-1408. [Crossref], [Google Scholar], [Publisher]
[32] J.K. Kim, S.U. Park, Quercetin and its role in biological functions: an updated review, EXCLI journal, 2018, 17, 856–863. [Crossref], [Google Scholar], [Publisher]
[33] P.T. Pham, H.P.T. Ngo, N.H. Nguyen, A.T. Do, T.Y. Vu, M.H. Nguyen, & B.H. Do, The anti-inflammatory activity of the compounds isolated from Dichroa febrifuga leaves, Saudi journal of biological sciences, 2023, 30, 103606. [Crossref], [Google Scholar], [Publisher]
[34] K.A. Burkhard, F. Chen, P. Shapiro, Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity, Journal of Biological Chemistry, 2011, 286, 2477-2485. [Crossref], [Google Scholar], [Publisher]
[35] B. Ma'arif, D.A.P. Fihuda, F.A. Muslikh, S. Syarifuddin, B. Fauziyah, D.P. Sari, & M. Agil, In silico study on the inhibition of TLR2 activation of the ethanol extract of Marsilea crenata Presl. Leaves, Tumbuhan Obat Indonesia, 2022, 15, 31-40. [Google Scholar], [Publisher]
[36] J. Lu, J. Liu, L. Li, Y. Lan, Y. Liang, Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets, Clinical & translational immunology, 2020, 9, 1122. [Crossref], [Google Scholar], [Publisher]
[37] N. Kaneko, M. Kurata, T. Yamamoto, et al. The role of interleukin-1 in general pathology, Inflammation and regeneration, 2019, 39, 1-16. [Crossref], [Google Scholar], [Publisher]
[38] C. Dinarello, W. Arend, J. Sims, D. Smith, H. Blumberg, L. O'Neill, C. Gabel, IL-1 family nomenclature, Nature immunology, 2010, 11, 973-973. [Crossref], [Google Scholar], [Publisher]
[39] A. Mantovani, C.A. Dinarello, M. Molgora, & C. Garlanda, Interleukin-1 and related cytokines in the regulation of inflammation and immunity, Immunity, 2019, 50, 778-795. [Crossref], [Google Scholar], [Publisher]