Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Department of Conservative Dentistry, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia

2 Conservative Dentistry Specialist Program, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia

10.48309/ecc.2024.432368.1745

Abstract

Microorganism contamination can induce dental pulp inflammation and generate pain. In this process, complex communication occurs between the immune and nervous system components until pain perception occurs. An improved understanding of the interactions involved in the dental pulp inflammatory pain process can be the basis for developing potential therapeutic agents. The current study aims to analyze the inflammatory pain process that follows the application of Porphyromonas gingivalis lipopolysaccharide (LPS) to dental pulp tissue by examining the expression of calcitonin-gene-related peptide (CGRP) in neurons (neuron-CGRP) and macrophages (macrophage-CGRP) as well as the expression of NaV 1.8 in neurons (neuron-NaV 1.8). This experimental laboratory study utilized 32 Spraque Dawley rats, divided into two groups. In the mandibular incisors, the control group only had access openings, while the treatment group had access openings and P. gingivalis LPS injections. Each group was terminated after 48 hours. Then slide preparations were made, and immunohistochemical staining was done to observe the expressions of neuron-CGRP, macrophage-CGRP, and neuron-NaV 1.8 using a light microscope. The LPS administration induced a significant increase in the expression of neuron-CGRP, macrophage-CGRP in macrophages, and neuron-NaV 1.8. There was no significant difference between the neuron-CGRP and macrophage-CGRP expressions. The neuron-CGRP is significantly and positively correlated with neuron-NaV 1.8. The microbial contamination via P. gingivalis LPS application to dental pulp tissue can increase the expression level of CGRP in both neurons and macrophages. However, only neuron-CGRP has been proven to significantly cause an increase in neuron-NaV 1.8 expression.

Graphical Abstract

Expression of CGRP and NaV 1.8 in neurons and macrophages after p.gingivalis lipopolysaccharide aplication on dental pulp tissue

Keywords

Main Subjects

  1. [1] (a) K.M. Galler, M. Weber, Y. Korkmaz, M. Widbiller, M. Feuerer, Inflammatory response mechanisms of the dentine pulp complex and the periapical tissues, International Journal of Molecular Sciences, 2021, 22, 1480. [Crossref], [Google Scholar], [Publisher], (b) A. Salh, M.H. Risan, Jasim, Biochemical characteristics and antibiotics susceptibility of streptococcus mutans isolates from dental caries in baghdad city,  International Journal of Advanced Biological and Biomedical Research, 2022, 10,  32-43. [Crossref], [Google Scholar], [Publisher], (c) A.  Amini, H. Shahpoori Arani, M. Milani Fard, Medical tourism industry: A systematic review on its principles, sequels, and ethical issues, Eurasian Journal of Science and Technology, 2022, 2, 139-151. [Crossref], [Google Scholar], [Publisher], (d) E. Erdag,  M. Kucuk, U. Aksoy, N. Abacioglu, A.O. Sehirli, Docking study of ligands targeting nlrp3 inflammatory pathway for endodontic diseases, Chemical Methodologies, 2023, 7, 200-210. [Crossref], [Google Scholar], [Publisher], (e) S. Korbag, I. Korbag, A short review on effects of bisphenol a and its analogues on endocrine system,  J. Chem. Rev2023, 5, 380-393. [Crossref], [Google Scholar], [Publisher]

    [2] N. Zargar, H. Ashraf, S.M.A. Marashi, M. Sabeti, A. Aziz, Identification of microorganisms in irreversible pulpitis and primary endodontic infections with respect to clinical and radiographic findings, Clin. Oral Investig., 2020, 24, 2099-2108. [Google Scholar], [Publisher]

    [3] L. Mazgaeen, P. Gurung, Recent advances in lipopolysaccharide recognition systems, International Journal of Molecular Sciences, 2020, 21, 379. [Crossref], [Google Scholar], [Publisher]

    [4] C . Lan, S. Chen, S. Jiang, H. Lei, Z. Cai, X. Huang, Different expression patterns of inflammatory cytokines induced by lipopolysaccharides from Escherichia coli or Porphyromonas gingivalis in human dental pulp stem cells,  BMC Oral Health, 2022, 22, 121. [Crossref], [Google Scholar], [Publisher]

    [5] K. Warfvinge, L. Edvinsson, Distribution of CGRP and CGRP receptor components in the rat brain, Cephalalgia, 2019, 39, 342-353 [Crossref], [Google Scholar], [Publisher]

    [6] L. Edvinsson, A.S. Grell, K. Warfvinge, Expression of the CGRP Family of Neuropeptides and their Receptors in the Trigeminal Ganglion, Journal of Molecular Neuroscience, 2020, 70, 930-944 [Crossref], [Google Scholar], [Publisher]

    [7] A. Bonura, N. Brunelli, M. Marcosano, G. Iaccarino, L. Fofi, F. Vernieri, C. Altamura, Calcitonin gene-related peptide systemic effects: embracing the complexity of its biological roles—a narrative review, International Journal             of            Molecular Sciences, 2023, 24, 13979 [Crossref], [Google Scholar], [Publisher]

    [8] A. Heidari, M. Shahrabi, M.S. Shahrabi, M. Ghandehari, P. Rahbar, Comparison of the level of substance P and neurokinin A in gingival crevicular fluid of sound and symptomatic carious primary teeth by ELISA, Journal of Dentistry, Tehran University of Medical Sciences, 2017, 14, 173-179 [Google Scholar], [Publisher]

    [9] H. Liang, H. Hu, D. Shan, J. Lyu, X. Yan, Y. Wang, F. Jian, X. Li, W. Lai, H. Long, CGRP modulates orofacial pain through mediating neuron-glia crosstalk, Journal of Dental Research, 2021, 100, 98–105 [Crossref], [Google Scholar], [Publisher]

    [10] M. Zhang, H. Fukuyama, J. Zhang, T. Tanaka, Immunoelectron microscopic study of cgrp-immunoreactive nerve terminals in wound healing and dentin bridge formation after pulpotomy in rat molar, Acta Histochem, 2003, 36, 43-49. [Crossref], [Google Scholar], [Publisher]

    [11] M. Sattari, M.A. Mozayeni, A. Matloob, M. Mozayeni, H.H. Javaheri, Substance P and CGRP expression in dental pulps with irreversible pulpitis, Aust Endod J, 2010, 36, 59–63. [Crossref], [Google Scholar], [Publisher]

    [12] J. Caviedes-Bucheli, C. Camargo-Beltrán, A.M. Gómez-la-Rotta, S.C. Moreno, G.C. Abello, J.M. González-Escobar, Expression of calcitonin gene-related peptide (CGRP) in irreversible acute pulpitis, Journal of Endodontics, 2004, 30, 201-204. [Crossref], [Google Scholar], [Publisher]

    [13] a) B.M. Assas, J.A. Miyan, J.L. Pennock, Cross-talk between neural and immune receptors provides a potential mechanism of homeostatic regulation in the gut mucosa, Mucosal Immunology, 2014, 7, 1283-1289. [Crossref], [Google Scholar], [Publisher], b) P.B. dos Santos Jr, Conceição de Maria Sales da Silva; Maria Elizabeth Gemaque Costa; Marcelo Costa Santos; Sergio Duvoisin Junior; Luiz Eduardo Pizarro Borges; Nélio Teixeira Machado. Kinetics of thermal degradation of PMMA-based dental resins scraps, Asian Journal of Green Chemistry2020, 4, 202-219 [Crossref], [Google Scholar], [Publisher], c) H.M. Bidhendi, Use chemical materials in automatic segmentation of teeth using x-ray, Advanced Journal of Chemistry-Section B: Natural Products and Medical Chemistry, 2023, 5, 1-13. [Crossref], [Pdf], [Publisher

    1. d) S.J. AlKhalidy, K.S. Dosh, Isolation and purification of αs-cn from sheep milk and measuring the effectiveness of its enzymatic hydrolysis in inhibiting ACE1, 2023. [Crossref], [Google Scholar], [Publisher]

    [14] L. Bracci-Laudiero, L. Aloe, P. Buanne, A. Finn, C. Stenfors, E. Vigneti, E. Theodorsson, T. Lundeberg, NGF modulates CGRP synthesis in human B-lymphocytes: a possible anti-inflammatory action of NGF, J Neuroimmunol, 2002, 123, 58-65 [Crossref], [Google Scholar], [Publisher]

    [15] H. Wang, L. Xing, W. Li, L. Hou, J. Guo, X. Wang, Production and secretion of calcitonin gene-related peptide from human lymphocytes, J Neuroimmunol, 2002, 130, 155-162. [Crossref], [Google Scholar], [Publisher]

    [16] L. Bracci-Laudiero, L. Aloe, M.C. Caroleo, P. Buanne,  N. Costa,  G. Starace,  T. Lundeberg, Endogenous NGF regulates CGRP expression in human monocytes, and affects HLA-DR and CD86 expression and IL-10 production, Blood, 2005, 106, 3507-3514. [Crossref], [Google Scholar], [Publisher]

    [17] W. Ma, R. Quirion, Increased calcitonin gene-related peptide in neuroma and invading macrophages is involved in the up-regulation of interleukin-6 and nerve injury associated thermal hyperalgesia in a rat model of mononeuropathy, J Neurochem, 2006, 98, 180–192. [Crossref], [Google Scholar], [Publisher]

    [18] W. Ma, Y. Dumont, F. Vercauteren, R. Quirion, Lipopolysaccharide induces calcitonin gene-related peptide in the RAW264.7 macrophage cell line, Immunology, 2010, 130, 399–409. [Crossref], [Google Scholar], [Publisher]

    [19] S. Iyengar, M. H. Ossipov, K. W. Johnson, The Role of Calcitonin Gene–related Peptide in Peripheral and Central Pain Mechanisms Including Migraine, PAIN, 2017, 158, 543–559. [Crossref], [Google Scholar], [Publisher]

    [20] K. Rajneesh, R. Bolash, Pathways of Pain Perception and Modulation, Fundamentals of Pain Medicine, 2018, 7-11. [Crossref], [Google Scholar], [Publisher]

    [21] S. Hameed, Nav1.7 and Nav1.8: Role in the pathophysiology of pain, Molecular pain, 2019, 15, 1-11. [Crossref], [Google Scholar], [Publisher]

    [22] F.A. Pinho-Ribeiro, W.A. Verri, I.M. Chiu, Nociceptor sensory neuron–immune interactions in pain and inflammation, Trends in Immunology, 2017, 38, 5–19. [Crossref], [Google Scholar], [Publisher]

    [23] I. Rotstein, J.I. Ingle, Ingle's Endodontics 7th edition, 2019, 201-2012. [Publisher

    [24] A. Suwanchai, U. Theerapiboon, N. Chattipakorn, S. C. Chattipakorn, NaV 1.8, but not NaV 1.9, is upregulated in the inflamed dental pulp tissue of human primary teeth, Int Endod J, 2012, 45, 372-378. [Crossref], [Google Scholar], [Publisher]

    [25] C.A. Warren, L. Mok, S. Gordon, A.F.  Fouad, M.S. Gold, Quantification of neural protein in extirpated tooth pulp, J Endod, 2008, 34, 7-10. [Crossref], [Google Scholar], [Publisher]

    [26] L. Jia, S. Lee, J.A. Tierney, J.K. Elmquist, M.D. Burton, L. Gautron, TLR4 signaling selectively and directly promotes CGRP release from vagal afferents in the mouse, ENEURO, 2020, 1-59. [Crossref], [Google Scholar], [Publisher]

    [27] G. Sampoerno, A. Bhardwaj, P.Y. Divina, N.N. Fripertiwi, N.H. Adipradana, Neurogenic inflammation pathway on the up-regulation of voltage-gated sodium channel NaV1.7 in experimental flare-up post-dental pulp tissue extirpation, Journal of International Dental and Medical Research, 2022, 15, 124-130. [Google Scholar], [Publisher]

    [28] A. Kaewpitak, C.S. Bauer, E.P. Seward, F.M. Boissonade, C.W.I. Douglas, Porphyromonas gingivalis lipopolysaccharide rapidly activates trigeminal sensory neurons and may contribute to pulpal pain, Int Endod J, 2020, 53, 846-858. [Crossref], [Google Scholar], [Publisher]

    [29] B.E. Castillo-Silva, V. Martinez-Jimenez, G.A. Martinez-Castanon, C.E. Medina-Solis, E.C. Aguirre-Lopez, J.R. Castillo-Hernandes, N. Pation-Marin, Expression of calcitonin gene-related peptide and pulp sensitivity tests in irreversible pulpitis, Brazilian Oral Research, 2019, 33, 1-10. [Crossref], [Google Scholar], [Publisher]

    [30] M. Yin, C. Li, X. D. Peng, G. Q. Zhao, Y. Wu, H.R. Zheng, Q. Wang, Q. Xu, N. Jiang, Expression and role of calcitonin gene-related peptide in mouse Aspergillus fumigatus keratitis, Int J Ophthalmol, 2019, 12, 697-704. [Crossref], [Google Scholar], [Publisher]

    [31] a) J.-X. Duan, Y. Zhou, A.-Y. Zhou, X.-X. Guan, T. Liu, H.-H. Yang, P. Chen, Calcitonin gene-related peptide exerts anti-inflammatory property through regulating murine macrophages polarization in vitro, Molecular Immunology, 2017, 91, 105–113. [Crossref], [Google Scholar], [Publisher], b) S.H.  Abdullahi, A.  Uzairu, G.A. Shallangwa, S. Uba, A. Umar, Pharmacokinetics studies of some diaryl pyrimidinamine derivatives as anti-cancer agent: in-silico drug design and molecular docking, Adv J Chem A2022, 5, 320-332. [Crossref], [Google Scholar], [Publisher]

    [32] S. Hannoodee, D.N. Nasuruddin, Acute inflammatory response, StatPearls Publishing, 2020. [Google Scholar], [Publisher]

    [33] T. Tajima, T. Murata, K. Aritake, Y. Urade, H. Hirai, M. Nakamura, M. Hori, Lipopolysaccharide Induces Macrophage Migration via Prostaglandin D2 and Prostaglandin E2,  Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 493-501. [Crossref], [Google Scholar], [Publisher]

    [34] G. Natura, G.S. von Banchet, H.-G. Schaible, Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats, Pain, 2005, 116, 194–204. [Crossref], [Google Scholar], [Publisher]

    [35] T. Renton, Y. Yiangou, C. Plumpton, S. Tate, C. Bountra, P. Anand, Sodium channel Nav1.8 immunoreactivity in painful human dental pulp, BMC Oral Health, 2005, 5, 5. [Crossref], [Google Scholar], [Publisher]

    [36] E. V. Bird, C.R. Christmas, A.R. Loescher, K.G. Smith, P.P. Robinson, J.A. Black, S.G. Waxman, F.M. Boissonade, Correlation of Nav1.8 and Nav1.9 sodium channel expression with neuropathic pain in human subjects with lingual nerve neuromas, Mol Pain, 2013, 9, 52. [Crossref], [Google Scholar], [Publisher]

    [37] F.A. Russell, R. King, S.J. Smillie, X. Kodji, S.D. Brain, Calcitonin gene-related peptide: physiology and pathophysiology, Physiol Rev, 2014, 94, 1099-1241. [Crossref], [Google Scholar], [Publisher]

    [38] L. Xing, J. Guo, X. Wang, Induction and expression of beta-calcitonin gene-related peptide in rat T lymphocytes and its significance, J Immunol, 2000, 165, 4359-4366. [Crossref], [Google Scholar], [Publisher]

    [39] Q. Hou, T. Barr, L. Gee, J. Vickers, J. Wymer, E. Borsani, L. Rodella, S. Getsios, T. Burdo, E. Eisenberg, U. Guha, R. Lavker, J. Kessler, S. Chittur, D. Fiorino, F. Rice, P. Albrecht, Keratinocyte expression of calcitonin gene-related peptide beta: implications for neuropathic and inflammatory pain mechanisms, Pain, 2011, 152, 2036–2051. [Crossref], [Google Scholar], [Publisher]

    [40] R. Hu, Y. J. Li, X. H. Li, An Overview of Non-Neural Sources of Calcitonin Gene- Related Peptide, Current Medicinal Chemistry, 2016, 23, 763-773. [Google Scholar], [Publisher]