Scopus (CiteScore 2022 =3.0, Q3) , ISC

Document Type : Original Research Article

Authors

1 Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan

2 Department of Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan

3 Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan

4 Department of Medical Laboratory Sciences, Faculty of Science, Mutah University, Mutah 61710, Jordan

10.48309/ecc.2024.444026.1747

Abstract

This study intends to investigate the potential use of mmBCFA, which includes 10 MTD, 12 MTD, 13 MTD, and 14 MTD, as a treatment option for cancer. This is due to the close correlation between metabolic dysregulation and the mmBCFA presence. We looked at how mmBCFA affected several cancer cell lines, such as those from the pancreas, colon, and breast. After determining the antiproliferative effects of these agents, we evaluated the expression levels of Bax, β-catenin, and cyclin D1. Furthermore, we performed Molecular Docking studies to look into how these agents interacted with the tyrosine kinase (EGFR) domain of the Epidermal Growth Factor Receptor. We discovered that mmBCFA efficiently inhibited the growth of multiple cancer cell lines, such as those from the colon, breast, and pancreas. Specifically, we found that when insulin was stimulated in HCT116, MCF7, and Panc1 cancer cells, 12MTD and 13MTD significantly reduced the expression levels of β-catenin and Cyclin D1. This was determined using selective qRT-PCR methods. In addition, our Molecular Docking analyses indicated that 12 MTD and 13 MTD interacted with specific residues in the EGFR domain. Based on our current findings, it appears that the mmBCFA supplementation could be considered as a novel and promising therapeutic option for treating cancer.

Graphical Abstract

Evaluation of the antiproliferative activity and molecular docking of selected branched fatty acids

Keywords

Main Subjects

[1] Y. Yan, Z. Wang, J. Greenwald, K.S.D. Kothapalli,  H.G. Park, R. Liu, E. Mendralla, P. Lawrence, X. Wang, J. T. Brenna, BCFA suppresses LPS induced IL-8 mRNA expression in human intestinal epithelial cells, Prostaglandins, Leukotrienes and Essential Fatty Acids2017, 116, 27–31.  [Crossref], [Google Scholar], [Publisher]
[2] V.M. Taormina, A.L. Unger, M.R. Schiksnis, M. Torres-Gonzalez, J. Kraft, Branched-chain fatty acids— An underexplored class of dairy-derived fatty acids, Nutrients2010,  12, 2875. [Crossref], [Google Scholar], [Publisher]
 
[3] R.R. Ran-Ressler, S. Devapatla, P. Lawrence, J.T. Brenna, Branched chain fatty acids are constituents of the normal healthy newborn gastrointestinal tract, Pediatric Research2008, 64, 605–609.  [Crossref], [Google Scholar], [Publisher]
[4] R.R. Ran-Ressler, D. Sim, A.M. O'Donnell-Megaro, D.E. Bauman, D.M. Barbano, J.T. Brenna, Branched chain fatty acid content of United States retail cow’s milk and implications for dietary intake, Lipids2011, 46, 569–576. [Crossref], [Google Scholar], [Publisher]
[5] X. Su, F. Magkos, D. Zhou, J.C. Eagon, E. Fabbrini, A.L. Okunade, S. Klein, Adipose tissue monomethyl branched-chain fatty acids and insulin sensitivity: Effects of obesity and weight loss, Obesity2014, 23, 329–334.  [Crossref], [Google Scholar], [Publisher]
[6] M. Wallace, C.R. Green, L.S. Roberts, Y.M. Lee, J.L. McCarville, J. Sanchez-Gurmaches, N. Meurs, J.M. Gengatharan, J.D. Hover, S.A. Phillips, T.P. Ciaraldi, D.A. Guertin, P. Cabrales, J.S. Ayres, D.K. Nomura, R. Loomba,  C.M. Metallo, Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues, Nature Chemical Biology2018, 14, 1021–1031. [Crossref], [Google Scholar], [Publisher]
[7] Q. Cai, H. Huang, D. Qian, K. Chen, J. Luo, Y. Tian, T. Lin, T. Lin, 13-Methyltetradecanoic acid exhibits anti-tumor activity on T-cell lymphomas in vitro and in vivo by down-regulating p-AKT and activating caspase-3, PloS One, 2013, 8, e65308. [Crossref], [Google Scholar], [Publisher]
[8] M. Alqaraleh, V. Kasabri, The antiglycation effect of monomethyl branched chained fatty acid and phytochemical compounds and their synergistic effect on obesity related colorectal cancer cell panel, Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 2019, 26, 361-369. [Google Scholar], [Publisher]  
[9] C.G. Fresta, A. Fidilio, G. Lazzarino, N. Musso, M. Grasso, S. Merlo, A.M. Amorini, C. Bucolo, B. Tavazzi, G. Lazzarino, S.M. Lunte, F. Caraci, G. Caruso, Modulation of pro-oxidant and pro-inflammatory activities of M1 macrophages by the natural dipeptide carnosine, International Journal of Molecular Sciences, 202021, 776. [Crossref], [Google Scholar], [Publisher]
[10] A. Hagiwara, M. Nishiyama, S. Ishizaki, Branched‐chain amino acids prevent insulin‐induced hepatic tumor cell proliferation by inducing apoptosis through mTORC1 and mTORC2‐dependent mechanisms, Journal of Cellular Physiology, 2012, 227, 2097-2105. [Crossref], [Google Scholar], [Publisher]
[11] V. Vichai, K. Kirtikara, Sulforhodamine B colorimetric assay for cytotoxicity screening, Nature Protocols, 2006, 1, 1112-1116. [Crossref], [Google Scholar], [Publisher]
[12] M. Nobta, T. Tsukazaki, Y. Shibata, C. Xin, T. Moriishi, S. Sakano, H. Shindo, A. Yamaguchi, Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by delta1/jagged1-activated notch1 signaling, Journal of Biological Chemistry, 2005280, 15842–15848. [Crossref], [Google Scholar], [Publisher]
[13] K. Balint, M. Xiao, C.C. Pinnix, A. Soma, I. Veres, I. Juhasz, E.J. Brown, A.J. Capobianco, M. Herlyn, Z.-J. Liu, Activation of Notch1 signaling is required for β-catenin–mediated human primary melanoma progression, The Journal of Clinical Investigation, 2005, 115, 3166-3176. [Crossref], [Google Scholar], [Publisher]
[14] S. Kobayashi, T. Shimamura, S. Monti, U. Steidl, C.J. Hetherington, A.M. Lowell, T. Golub, M. Meyerson, D.G. Tenen, G.I. Shapiro, Transcriptional profiling identifies cyclin D1 as a critical downstream effector of mutant epidermal growth factor receptor signaling, Cancer Research, 2006, 66, 11389-11398. [Crossref], [Google Scholar], [Publisher]
[15] J. Huang, Y. Wang, C. Li, X. Wang, X. He, Anti-inflammatory oleanolic triterpenes from Chinese Acorns, Molecules, 2016, 21, 669. [Crossref], [Google Scholar], [Publisher]
[16] P. Novakovic, J.M. Stempak, K.J. Sohn, Y.I. Kim, Effects of folate deficiency on gene expression in the apoptosis and cancer pathways in colon cancer cells, Carcinogenesis, 2006, 27, 916-924. [Crossref], [Google Scholar], [Publisher]
[17] J. Stamos, M.X. Sliwkowski, C. Eigenbrot, Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor, Journal of biological chemistry, 2002, 277, 46265-46272. [Crossref], [Google Scholar], [Publisher]
[18] M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, Journal of Cheminformatics, 2012, 4, 1-17. [Crossref], [Google Scholar], [Publisher]
[19] K.E. Hevener, W. Zhao, D.M. Ball, K. Babaoglu, J. Qi, S.W. White, R.E. Lee, Validation of molecular docking programs for virtual screening against dihydropteroate synthase, Journal of Chemical Information and Modeling, 2009, 49, 444-460. [Crossref], [Google Scholar], [Publisher]
[20] BIOVIA, D. S. 2019. DS Visualizer. San Diego: Dassault Systèmes. 
[21] H. Noto, T. Tsujimoto, T. Sasazuki, M. Noda, Significantly increased risk of cancer in patients with diabetes mellitus: A systematic review and meta-analysis, 2011, Endocrine Practice17, 616-628. [Crossref], [Google Scholar], [Publisher]
[22] S. Oba, C. Nagata, K. Nakamura, N. Takatsuka, H. Shimizu, Self-reported diabetes mellitus and risk of mortality from all causes, cardiovascular disease, and cancer in Takayama: a population-based prospective cohort study in Japan, Journal of Epidemiology, 2008, 18, 197-203. [Crossref], [Google Scholar], [Publisher]
[23] S. Jones, Cancer research UK, Trends in Urology & Men's Health, 2011, 2, 37-37. [Crossref], [Google Scholar], [Publisher]
[24] F. Bella, P. Minicozzi, A. Giacomin, E. Crocetti, M. Federico, M. Ponz de Leon, M. Fusco, R. Tumino, L. Mangone, O. Giuliani, Impact of diabetes on overall and cancer-specific mortality in colorectal cancer patients, Journal of Cancer Research and Clinical Oncology, 2013, 139, 1303-1310. [Crossref], [Google Scholar], [Publisher]
[25] J.M. Berster, B. Göke, Type 2 diabetes mellitus as risk factor for colorectal cancer, Archives of Physiology and Biochemistry, 2008, 114, 84-98. [Crossref], [Google Scholar], [Publisher]
[26] Y.W. Chung, D.S. Han, K.H. Park, C.S. Eun, K.-S. Yoo, C.K. Park, Insulin therapy and colorectal adenoma risk among patients with Type 2 diabetes mellitus: a case-control study in Korea, Diseases of the Colon & Rectum, 2008, 51, 593-597. [Crossref], [Google Scholar], [Publisher]
[27] M. Uzunlulu, O. Telci Caklili, A. Oguz, Association between metabolic syndrome and cancer, Annals of Nutrition and Metabolism, 2016, 68, 173-179. [Crossref], [Google Scholar], [Publisher]
[28] V. Serra, B. Markman, M. Scaltriti, P.J. Eichhorn, V. Valero, M. Guzman, M.L. Botero, E. Llonch, F. Atzori, S. Di Cosimo, NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations, Cancer research, 2008, 68, 8022-8030. [Crossref], [Google Scholar], [Publisher]
[29] R. Mi, J. Ma, D. Zhang, L. Li, H. Zhang, Efficacy of combined inhibition of mTOR and ERK/MAPK pathways in treating a tuberous sclerosis complex cell model, Journal of Genetics and Genomics2009, 36, 355–361. [Crossref], [Google Scholar], [Publisher]
[30] M. Peifer, P. Polakis, Wnt Signaling in Oncogenesis and Embryogenesis--a Look outside the nucleus, Science2000, 287, 1606–1609. [Crossref], [Google Scholar], [Publisher]
[31] K.M. Jacobs, S.R. Bhave, D.J. Ferraro, J.J. Jaboin, D.E. Hallahan, D. Thotala, GSK-3: A Bifunctional Role in Cell Death Pathways. International Journal of Cell Biology2012, 2012, 1–11. [Crossref], [Google Scholar], [Publisher]
[32] J.A. Diehl, M. Cheng, M.F. Roussel, C.J. Sherr, Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization, Genes & Development1998, 12, 3499–3511. [Crossref], [Google Scholar], [Publisher]
[33] P. Watcharasit, G.N. Bijur, J.W. Zmijewski, L. Song, A. Zmijewska, X. Chen, G.V.W. Johnson, R.S. Jope, Direct, activating interaction between glycogen synthase kinase-3β and p53 after DNA damage, Proceedings of the National Academy of Sciences, 200299, 7951–7955. [Crossref], [Google Scholar], [Publisher]
[34] Y. Muto, S. Sato, A. Watanabe, H. Moriwaki, K. Suzuki, A. Kato, M. Kato, T. Nakamura, K. Higuchi, S. Nishiguchi, Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis, Clinical Gastroenterology and Hepatology, 2005, 3, 705-713. [Crossref], [Google Scholar], [Publisher]
[35] S. Wongtangtintharn, H. Oku, H. Iwasaki, M. Inafuku, T. Toda, T. Yanagita, Incorporation of branched-chain fatty acid into cellular lipids and caspase-independent apoptosis in human breast cancer cell line, SKBR-3, Lipids in Health and Disease, 2005, 4, 1-13. [Crossref], [Google Scholar], [Publisher]
[36] J. Iwasa, M. Shimizu, M. Shiraki, Y. Shirakami, H. Sakai, Y. Terakura, K. Takai, H. Tsurumi, T. Tanaka, H. Moriwaki, Dietary supplementation with branched‐chain amino acids suppresses diethylnitrosamine‐induced liver tumorigenesis in obese and diabetic C57BL/KsJ‐db/db mice, Cancer Science, 2010, 101, 460-467. [Crossref], [Google Scholar], [Publisher]  
[37] Y. Liang, T. Zhang, L. Ren, S. Jing, Z. Li, P. Zuo, T. Li, Y. Wang, J. Zhang, Z. Wei, Cucurbitacin IIb induces apoptosis and cell cycle arrest through regulating EGFR/MAPK pathway, Environmental Toxicology and Pharmacology, 2021, 81, 103542. [Crossref], [Google Scholar], [Publisher]
[38] Z. Zhang, Y. Guo, M. Chen, F. Chen, B. Liu, C. Shen, Kaempferol potentiates the sensitivity of pancreatic cancer cells to erlotinib via inhibition of the PI3K/AKT signaling pathway and epidermal growth factor receptor, Inflammopharmacology, 2021, 29, 1587-1601. [Crossref], [Google Scholar], [Publisher]
[39] R.Z. Batran, E.Y. Ahmed, E.S. Nossier, H.M. Awad, N.A.A. Latif, Anticancer activity of new triazolopyrimidine linked coumarin and quinolone hybrids: synthesis, molecular modeling, TrkA, PI3K/AKT and EGFR inhibition, Journal of Molecular Structure, 2024, 137790. [Crossref], [Google Scholar], [Publisher]
[40] N. Normanno, M.R. Maiello, A. De Luca, Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs): Simple drugs with a complex mechanism of action? Journal of Cellular Physiology2002, 194, 13–19. [Crossref], [Google Scholar], [Publisher]