Web of Science (Emerging Sources Citation Index), ISC

Document Type : Original Research Article


Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran



As it is always necessary to design a pipeline at high pressure (high density), pipelines are also exposed to ambient temperatures and are usually exposed to low temperatures. On the other hand, in the presence of water vapor (almost all natural gases have some water vapor), and more importantly, the presence of hydrocarbons causes hydrate crystals to form. In this work, the capacity of carbon dioxide hydrate storage in water in the presence of surfactants at different temperatures, pressures and concentrations of TBAC and CTAB additives was calculated and measured using induction time measurement. The results of experiments show that with increasing pressure and decreasing temperature the storage capacity of CO2 in hydrate increases. Addition of CTAB also dramatically increases the storage capacity, while increasing pressure has a greater impact on the storage capacity of carbon dioxide in the hydrate. The effect of TBAC and CTAB surfactant on the induction of hydrate formation and carbon dioxide storage capacity was investigated. Design Expert software was used to design the experiment. Finally, statistical analysis of the effective parameters on the time of induction of hydrate formation showed that TBAC can decrease the time of induction of hydrate formation compared to other additives. In investigation of the effect of variables on the storage capacity of carbon dioxide gas, it can be concluded that increasing the amount of CTAB surfactant and pressure has the most impact on the increase of carbon dioxide storage capacity compared.

Graphical Abstract

Investigation of the kinetics of formation of Clatrit-like dual hydrates TBAC in the presence of CTAB


[1] K. Hashemifard, M. Shafiee., Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry, 2020, 3, 49-57.
[2] A. Samimi, S. Zarinabadi, Australian journal of basic and applied science, 2011, 5, 741-745.
[3] M. Maslin, M. Owen, R. Betts, S. Day, Mathematical, Physical and Engineering Sciences, 2010, 368, 93-2369.
[4] J. Foroozesh, A. Khosravani, A. Mohsenzadeh, A.H. Mesbahi, Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 64-2258.
[5] Y. Zhong, R. Rogers, Chemical Engineering Science, 2000, 55, 4175-4178.
[6] A. Mohammadi, M. Pakzad, A.H. Mohammadi, A. Jahangiri, Petroleum Sci. 2015, 15, 375-381.
[7] M. Norouzi, A. Mohammadi, V. Leoreanu–Fotea, Math. Comput. Chem, 2018, 80, 383-390.
[8] H. Arandiyan, H. Chang, C. Liu, Y. Peng, J. Li, J. Mol. Catal A: Chem, 2013, 378, 299-310.
[9] M. Kasaeezadeh, A. Azimi, JAC Res, 2018, 12, 74-80.
[10] A. Azimi, M. Mirzaei, S.M. Tabatabaee, Bulgarian Chemical Communications, 2015, 47, 49-55.
[10] M. Manteghian, A. Azimi, J. Towfighi, J CHEM ENG JPN, 2011, 44, 942-950.
[11] A. Mohammadi, M. Pakzad, A. Azimi, Petroleum Res, 2017, 27, 160-170.
[12] P. Di Profio, S. Arca, R. Germani, G. Savelli, J fuel cell sci tech, 2007, 4, 49-55.
[13] N.J. Kim, J.H. Lee, Y.S. Cho, W. Chun, Energy, 2010, 35, 2717-2730.
[14] A. Mohammadi, M. Manteghian, A. Haghtalab, A.H. Mohammadi, M. Rahmati-Abkenar, Chem Eng J, 2014, 237, 387-395
[15] A. Mohammadi, M. Manteghian, A.H. Mohammadi, J. Chem. Eng. Data, 2013, 58, 3545-3551.
[16] C.S. Zhang, S.S. Fan, D.Q. Liang, K.H. Guo, Fuel, 2004, 83, 2115-2120.
[17] S.P. Kang, H. Lee, C.S. Lee, W.M. Sung, Fluid Phase Equilibria, 2001, 185, 101-110.
[18] Y.S. Yu, S.D. Zhou, X.S Li, S.L. Wang, Fluid Phase Equilibria, 2016, 414, 23-30.
[19] B.Y. Zhang, Q. Wu, D.L. Sun, Journal of China University of Mining and Technology, 2008, 18, 18-25.
[20] A. Kumar, T. Sakpal, P. Linga, R. Kumar, Fuel, 2013, 105, 664-670.
[21] M. Motiee, Int Ed, 1991, 70, 98-103.
[22] D.L. Katz, Trans AIME, 1945, 160, 140-149.
[23] M.A. Bezerra, R. Santelli, E.P. Oliveira L.S. Villar, L.A. Escaleira, Talanta, 2008, 76, 965-977
[24] M. Khayet, A.Y. Zahrim, N. Hilal, Chemical Engineering Journal, 2011, 167, 77-83.
[25] F. Ghorbani, H. Younesi, M. Ghasempouri, A. Zinatizadeh, M. Amini, A. Daneshi, Chemical Engineering Journal, 2008, 145, 267–275.
[26] S.S. Madaeni, N. Arast, F. Rahimpour, Y. Arast, Desalination, 2011, 280, 305-313.
[27]      S. Sheik Mansoor, K. Aswin, K. Logaiya, S.P.N. Sudhan, J. Saudi Chem. Soc., 2016, 20, 138-150. 
[28]      A. Anatolevich, S. Michailovich, Chemical Methodologies, 2019, 1, 1-14.
[29]      M. Lei, L. Ma, L. Hu, Tetrahedron Lett, 2009, 50, 6393-6397.
[30]      S. Houshmandynia, R. Raked, F. Golbabaei, Chemical Methodologies, 2018, 4, 270-340.
[31]      Z. Arzehgar, S. Sajjadifar, H. Arandiyan, Asian J. Green Chem., 2019, 3, 43-52.
[32]      S. Ameli, A. Davoodnia, M. Pordel, Org. Prep. Proced. Int., 2016, 48, 328-336.
[33]      M. Fattahi, A. Davoodnia, M. Pordel, Russ. J. Gen. Chem., 2017, 87, 863-867.
[34]      H. Shafiee, F. Mostaghni, K. Ejraei, Chemical Methodologies, 2018, 2, 83-180.
[35]      O. Ghasemi, N. Mehrdadi, M. Baghdadi, B. Aminzadeh, Iranian Chemical Communication, 2019, 4, 352-367.
[36]      G. Mansouri, M. Ghobadi, Iranian Chemical Communication, 2019, 4, 424-431.
[37]      S. M. Habibi-Khorassani, M. Dehdab, M. Darijani, Iranian Chemical Communication, 2019, 4, 455-471.
[38]      F. Fayyaz Jorshari, M. Rabbani, R. Rahimi, M. Rassa, Iranian Chemical Communication, 2019, 1, 53-62.
[39]      R. Motamedi, F. Ebrahimi, G. Rezanejade Bardajee, Asian J. Green Chem., 2019, 3, 22-33.
[40]      S. Sajjadifar, I. Amini, H. Jabbari, O. Pouralimardan, M.H. Fekri, K. Pal, Iran. Chem. Commun., 2019, 7, 191-199.
[41]      A. Hassankhani, Iran. Chem. Commun., 2019, 7, 248-256.
[42]      H. Hasani, M.Irizeh, Asian J. Green Chem., 2018, 2, 85-95.
[43]      L. Nagarapu, M. Baseeruddin, S. Apuri, S. Kantevari, Catal Commun, 2007, 8, 1729-1734.
[44]      T. Madhar., Journal of Safety Research, 2018, 66, 121-129.