Web of Science (Emerging Sources Citation Index)

Document Type : Original Research Article

Authors

1 Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Food & Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

3 Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

4 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

5 Department of Physical Chemistry, University of Tabriz, Tabriz, Iran

6 Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan

7 Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan

8 International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan

10.22034/ecc.2021.256060.1112

Abstract

In this study, HAP-gelatin and CC-gelatin nanocomposite scaffolds, as bioactive inorganic materials, were synthesized successfully through a chemical precipitation procedure. Next, characterization of the prepared nanocomposite scaffolds was completed using scanning electron microscopy (SEM), dynamic light scattering (DLS), zeta-sizer (for zeta potential measurement), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Then, we soaked the generated nanocomposite scaffolds in the simulated body fluid (SBF) for several times to investigate and compare the bioactivity of these nanocomposites and determine the percent of weight loss. The rate of calcium ions dissolution in SBF media was determined utilizing atomic absorption spectroscopy (AAS). The findings of characterization showed that the preparation of nanocomposites was successful with monodispersed nanosized particles, uniform agglomerated morphology, crystalline form, and negative surface charge. According to the results of the bioactivity test, both nanocomposite scaffolds were of high bioactivity, corroborated well with the patterns of calcium release. Calcium ions released from the HAP-gelatin nanocomposite were higher than that of the CC-gelatin. However, the bioactivity of CC was comparable with well-known bioactive HAP material. Therefore, it could be a promising alternative for use compared with HAP, the preparation of which is more complicated and expensive.

Graphical Abstract

Hydroxyapatite-gelatin and calcium carbonate- gelatin nanocomposite scaffolds: Production, physicochemical characterization and comparison of their bioactivity in simulated body fluid

Keywords

Main Subjects

[1] M.H. Aghajan, M. Panahi-Sarmad, N. Alikarami, S. Shojaei, A. Saeidi, H.A. Khonakdar, M. Shahrousvan, V. Goodarzi, European Polymer Journal, 2020, 131,  109720.

[2] E. Ahmadian, S.M. Dizaj, E. Rahimpour, A. Hasanzadeh, A. Eftekhari, J. Halajzadeh, H. Ahmadian, Materials Science and Engineering: C, 2018, 93, 465-471.

[3] E. Ahmadian, S.M. Dizaj, S. Sharifi, S. Shahi, R. Khalilov, A. Eftekhari, M. Hasanzadeh, TrAC Trends in Analytical Chemistry, 2019, 116, 167-176.

[4] N.H.A. Camargo, C. Soares, E. Gemelli, Materials Research, 2007, 10, 135-140.

[5] A.H. Dewi, I.D. Ana, J. Wolke, J. Jansen, Journal of Biomedical Materials Research - Part A, 2013, 101 A, 2143-2150.

[6] A.H. Dewi, I.D. Ana, J. Wolke, J. Jansen, Journal of Biomedical Materials Research - Part A, 2015, 103, 3273-3283.

[7] S.M. Dizaj, M. Mokhtarpour, H. Shekaari, S. Sharifi, Journal of Advanced Chemical and Pharmaceutical Materials (JACPM), 2019, 2, 111-115.

[8] S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.-H. Zarrintan, K. Adibkia, Journal of Drug Delivery Science and Technology, 2016, 35, 16-23.

[9] S.M. Dizaj, A. Maleki, F. Lotfipour, S. Sharifi, F. Rezaie, M. Samiei, BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2018, 8, 3670-3673.

[10] A. Eftekhari, M. Hasanzadeh, S. Sharifi, S.M. Dizaj, R. Khalilov, E. Ahmadian, International Journal of Biological Macromolecules, 2018, 117, 993-1001.

[11] M. Fathi, A. Hanifi, Materials letters, 2007, 61, 3978-3983.

[12] A. Göpferich, Biomaterials, 1996, 17, 103-114.

[13] S. Gorgieva, V. Kokol. Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives. 2011.

[14] E. Hamidi-Asl, J.-B. Raoof, N. Naghizadeh, S. Sharifi, M.S. Hejazi, Journal of Chemical Sciences, 2015, 127, 1607-1617.

[15] A. Hamidi, S. Sharifi, S. Davaran, S. Ghasemi, Y. Omidi, M.-R. Rashidi, BioImpacts: BI, 2012, 2, 97-103.

[16] A. Hanifi, M.H. Fathi, Iranian Journal of Pharmaceutical Sciences, 2008, 4, 141-148.

[17] M.J. Hossana, M. Gafurb, R. Kadirb, M.M. Karima, International Journal of Engineering & Technology IJET-IJENS, 2014, 14, 24-32.

[18] I.K. Januariyasa, I.D. Ana, Y. Yusuf, Materials Science and Engineering C, 2020, 107.

[19] T. Kokubo, H. Takadama, Biomaterials, 2006, 27, 2907-2915.

[20] S.C.G. Leeuwenburgh, I.D. Ana, J.A. Jansen, Acta Biomaterialia, 2010, 6, 836-844.

[21] A. Lemos, J. Ferreira, Materials Science and Engineering: C, 2000, 11, 35-40.

[22] D.-M. Liu, T. Troczynski, W.J. Tseng, Biomaterials, 2001, 22, 1721-1730.

[23] A. Maleki, A. Karimpour, M. Mokhtarpour, S.M. Dizaj, Journal of advanced chemical and pharmaceutical materials (JACPM), 2018, 1, 73-76.

[24] S. Maleki Dizaj, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, F. Lotfipour, Expert opinion on drug delivery, 2015, 12, 1649-1660.

[25] S. Maleki Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.-H. Zarrintan, K. Adibkia, Artificial cells, nanomedicine, and biotechnology, 2017, 45, 535-543.

[26] S. Maleki Dizaj, S. Sharifi, E. Ahmadian, A. Eftekhari, K. Adibkia, F. Lotfipour, Expert opinion on drug delivery, 2019, 16, 331-345.

[27] K.R. Mohamed, H.H. Beherei, Z.M. El-Rashidy, Journal of Advanced Research, 2014, 5, 201-208.

[28] R. Murugan, S. Ramakrishna, Journal of Crystal Growth, 2005, 274, 209-213.

[29] Z. Nabipour, M. Nourbakhsh, M. Baniasadi, Nanomedicine Journal, 2016, 3, 127-134.

[30] M. Ni, B.D. Ratner, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 2008, 40, 1356-1361.

[31] H. Ohgushi, M. Okumura, S. Tamai, E.C. Shors, A.I. Caplan, Journal of biomedical materials research, 1990, 24, 1563-1570.

[32] S. Ranganathan, K. Balagangadharan, N. Selvamurugan, International journal of biological macromolecules, 2019,

[33] H. Ren, A. Li, B. Liu, Y. Dong, Y. Tian, D. Qiu, Scientific reports, 2017, 7, 3622.

[34] M. Saeedi, M. Eslamifar, K. Khezri, S.M. Dizaj, Biomedicine & Pharmacotherapy, 2019, 111, 666-675.

[35] S. Salatin, M. Jelvehgari, Pharmaceutical Sciences, 2017, 23, 84-94.

[36] S. Salatin, M. Alami-Milani, R. Daneshgar, M. Jelvehgari, Drug development and industrial pharmacy, 2018, 44, 1613-1621.

[37] S. Salatin, J. Barar, M. Barzegar-Jalali, K. Adibkia, F. Kiafar, M. Jelvehgari, Jundishapur Journal of Natural Pharmaceutical Products, 2018, 13.

[38] S. Shahi, J. Yazdani, E. Ahmadian, S. Sunar, S.M. Dizaj, Journal of advanced chemical and pharmaceutical materials (JACPM), 2018, 1, 62-64.

[39] S. Sharifi, M. Mokhtarpour, A. Jahangiri, S. Dehghanzadeh, S. Maleki-Dizaj, S. Shahi, BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2018, 8, 3695-3699.

[40] S. Sharifi, S.Z. Vahed, E. Ahmadian, S.M. Dizaj, A. Eftekhari, R. Khalilov, et al., Biosensors and Bioelectronics, 2020, 150, 111933.

[41] Z. Sheikh, S. Najeeb, Z. Khurshid, V. Verma, H. Rashid, M. Glogauer, Materials, 2015, 8, 5744-5794.

[42] M. Sumathra, K.K. Sadasivuni, S.S. Kumar, M. Rajan, ACS omega, 2018, 3, 14620-14633.

[43] Y. Wang, A. Liu, R. Ye, X. Li, Y. Han, C. Liu, International Journal of Food Properties, 2015, 18, 2442-2456.

[44] T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Biomaterials, 2000, 21, 1803-1810.

[45] G. Williamson, W. Hall, Acta Metall Sinica, 1953, 1, 22-31.

[46] G. Xu, N. Yao, I.A. Aksay, J.T. Groves, Journal of the American Chemical Society, 1998, 120, 11977-11985.

[47] J. Yazdani, E. Ahmadian, S. Sharifi, S. Shahi, S.M. Dizaj, Biomedicine & Pharmacotherapy, 2018, 105, 553-557.

[48] Y. Yu, Z. Bacsik, M. Edén, Materials, 2018, 11, 1690.

[49] P.A. Zapata, H. Palza, B. Díaz, A. Armijo, F. Sepúlveda, J.A. Ortiz, M. Paz Ramírez, C. Oyarzún, Molecules (Basel, Switzerland), 2018, 24, 126.

[50] Y. Zhang, V.J. Reddy, S.Y. Wong, X. Li, B. Su, S. Ramakrishna, C.T. Lim, Tissue Engineering Part A, 2010, 16, 1949-1960.