Web of Science (Emerging Sources Citation Index), ISC

Document Type : Original Research Article

Authors

1 Department of Mathematics and Statistics, The University of Lahore, Lahore, 54000, Pakistan

2 Department of Health and Physical Education, Lahore College for Women University, Lahore, Pakistan

3 MCS, National University of Science and Technology, Islamabad, Pakistan

4 Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran

5 Faculty of Education, Van Yuzuncu Yıl University, Van, Turkey

Abstract

The chemical graph theory is interrelated with the chemical structure of different compounds. This graph represents the molecule of the sub-stance. A chemical graph is rehabilitated into a real number by applying some mathematical tackles. This number can elaborate on the properties of the molecule. This number is called topological catalogs. Here, we find some topological catalogs via M-polynomial for the zigzag-edge coronoid graph.

Graphical Abstract

Topological analysis of zigzag-edge coronoid graph by using M-polynomial

Keywords

Main Subjects

Introduction

Topological indices [1-10] in theoretical chemistry has drawn a great interest. The topological indices help us to recognize the different sorts of chemical substances. The topological index has a basic role that shows the chemical building to a mathematical number which is used to explain a molecule under testing.

Topological indices [11-18] are calculated from their definition; however, these are also calculated by using their M-polynomial.  M-polynomial is also graph demonstrative mathematical object. By using M-polynomial, we work out various degree dependent topological invariant present in Table 2.

The M-polynomial introduced for a graph G is defined as [19]:

Where δ=min{dv|vV (G)}, Δ=max{dv|vV (G)} and mij(G) is the number of edges vu∈E(G) such that {dv;du}={i;j}.

Table 3 represents some well-known degree based topological directories to compute through M-Polynomial. M-polynomial of many graphs were introduced in the past [20-30]. In the current work, we add M-polynomials and topological indices [31-33] of ZC(g,h,q), Figure 1, of the zigzag-edge coronoid ZC(g,h,q), can be considered as a structure obtained by fusing three linear polyenes of length g; h and q, respectively.

M-Polynomial of zigzag-edge coronoid graph

Theorem 3.1. If Zigzag-edge coronoid is denoted by ZC(g,h,q), then for g,h,q≥3, its M-polynomial is

M[ZC(g,h,q),x,y]

=6x2y2+(8(g+h+q)-36)x2y3+2(g+h+q)x3y3

Proof. Let ZC(g,h,q) be a Zigzag-edge coronoid, then from Table 1 and figure 1 the Edge partition of ZC(g,h,q) is

E2;2(ZC(g,h,q))={e=uv∈ZC(g,h,q): du=2; dv=2} → |E2;2ZC(g,h,q)|=6

E2;3(ZC(g,h,q))={e=uv∈ZC(g,h,q): du=2; dv=3} → |E2;3ZC(g,h,q)|=(8(g+h+q)-36)

E3;3ZC(g,h,q))={e=uv∈ZC(g,h,q): du=3; dv=3} → |E3;3ZC(g,h,q)|=2(g+h+q)

The following result obtained by applying the definition of M-polynomial

M[ZC(g,h,q),x,y]=|E2;2|x2y2+|E2;3|x2y3+|E3;3|x3y3

 =6x2y2+(8(g+h+q)-36)x2y3+2(g+h+q)x3y3.

The strategy of M-polynomial of ZC(g,h,q) is shown in Figure 2.

Topological indices of zigzag-edge coronoid

Theorem 4.1. Let ZC(g, h, q) be a Zigzag-edge coronoid

M[ZC(g,h,q),x,y]=6x2y2+(8(g+h+q)-36)x2y3+2(g+h+q)x3y3  

Proof. Let M[ZC(g,h,q),x,y]=6x2y2+(8(g+h+q)-36)x2y3+2(g+h+q)x3y3

 

Conclusion

In this study, we calculated the closed-form of M-polynomial for the graph Zigzag-edge coronoid, and then we derivative several degree-based topological indices as well, which supports shrinking the number of experiments. These topological indices can help characterize biological, chemical, and physical features of a molecule. So topological index has a fundamental role that represents the chemical structure of a molecule to a real number and is used to precise the molecule which is being tested. These outcomes are very supportive in accepting and forecasting the physico-chemical properties of these chemical structures. Distance-related graph indices for these imperative chemical graphs is still open to further research.

Acknowledgments

The authors extend their real appreciation to the reviewers for their insightful comments and technical suggestions to enhance quality of the article.

Orcid:

Farkhanda Afzal: https://orcid.org/0000-0001-5396-7598

Mohammad Reza Farahani: https://orcid.org/0000-0003-2969-4280

Murat Cancan: https://orcid.org/0000-0002-8606-2274

-----------------------------------------------------------------------------------------

How to cite this article: Muhammad Ehsan, Sumera Sattar, Faryal Chaudhry, Farkhanda Afzal*, Mohammad Reza Farahani, Murat Cancan. Topological analysis of zigzag-edge coronoid graph by using M-polynomial. Eurasian Chemical Communications, 2021, 3(9), 590-597. Link: http://www.echemcom.com/article_134628.html

-----------------------------------------------------------------------------------------

Copyright © 2021 by SPC (Sami Publishing Company) + is an open access article distributed under the Creative Commons Attribution License(CC BY) license  (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[1] D. Afzal, S. Hussain, M. Aldemir, M. Farahani, F. Afzal. Eurasian Chem. Commun., 2020, 2, 1117-1125. [crossref], [Google Scholar], [Publisher]
[2] F. Afzal, S. Hussain, D. Afzal, S. Hameed. Open Chem., 2020, 18, 1362–1369. [crossref], [Google Scholar], [Publisher]
[3] F. Afzal, S. Hussain, D. Afzal, S. Razaq. J. Inf. Opt. Sci., 2020, 41, 1061-1076. [crossref], [Google Scholar], [Publisher]
[4] F. Afzal, M.A. Razaq, D. Afzal, S. Hameed, Eurasian Chem. Commun., 2020, 2, 652-662. [crossref], [Google Scholar], [Publisher]
[5] F. Afzal, S. Hussain, D. Afzal, S. Razaq, J. Inf. Opt. Sci., 2020, 41, 1061–1076. [crossref], [Google Scholar], [Publisher]
[6] Z. Ahmad, M. Naseem, M.K. Jamil, M.K. Siddiqui, M.F. Nadeem. Eurasian Chem. Commun., 2020, 2, 663-671. [crossref], [Google Scholar], [Publisher]
[7] Z. Ahmad, M. Naseem, M.K. Jamil, Sh. Wang, M.F. Nadeem, Eurasian Chem. Commun., 2020, 2, 712-721. [crossref], [Google Scholar], [Publisher]
[8] D. Afzal, F. Afzal, M.R. Farahani, S. Ali, Complexity, 2021, 2021, 1-11, Article ID 5881476. [crossref], [Google Scholar], [Publisher]
[9] M. Alaeiyan, C. Natarajan, G. Sathiamoorthy, M.R. Farahani, Eurasian Chem. Commun., 2020, 2, 646-651. [crossref], [Google Scholar], [Publisher
[10] A.T. Balaban, Chem. Phys. Lett., 1982, 89, 399-404. [crossref], [Google Scholar], [Publisher
[11] A.Q. Baig, M. Naeem, W. Gao, J.B. Liu, Eurasian Chem. Commun., 2020, 2, 634-640. [crossref], [Google Scholar], [Publisher
[12] M. Cancan, D. Afzal, S. Hussain, A. Maqbool, F. Afzal, J. Dis. Math. Sci. Cryp., 2020, 23, 1157-1171. [crossref], [Google Scholar], [Publisher
[13] M. Cancan, S. Ediz, H. Mutee-Ur-Rehman, D. Afzal, J. Inf. Opt. Sci., 2020, 41, 1117-1131. [crossref], [Google Scholar], [Publisher
[14] M. Cancan, S. Ediz, M.R. Farahani, Eurasian Chem. Commun., 2020, 2, 641-645. [crossref], [Google Scholar], [Publisher
[15] F. Chaudhry, M. Ehsan, D. Afzal, M.R. Farahani, M. Cancan, E. Ediz, J. Dis. Math. Sci. Cryp., 2021, 24, 401-414. [crossref], [Google Scholar],  [Publisher
[16] F. Chaudhry, M. Ehsan, F. Afzal, M. Farahani, M. Cancan, I. Ciftci, Eurasian Chem. Commun., 2021, 3, 146-153. [crossref], [Google Scholar], [Publisher
[17] F. Chaudhry, M. Ehsan, F. Afzal, M. Farahani, M. Cancan, I. Ciftci, Eurasian Chem. Commun., 2021, 3, 103-109. [crossref], [Google Scholar], [Publisher
[18] F. Chaudhry, I. Shoukat, D. Afzal, C. Park, M. Cancan, M.R. Farahani, J. Chem., 2021, 1-12, Article ID 6679819. [crossref], [Google Scholar],  [Publisher
[19] E. Deutsch, S. Klavžar, Iran. J. Math. Chem., 2015, 6, 93-102. [crossref], [Google Scholar],  [Publisher
[20] S. Fajtlowicz, Congr, 1987, 60, 189-197. [Google Scholar]
[21] B. Furtula, A. Graovac, D. Vukičević, J. Math. Chem., 2010, 48, 370-380. [crossref], [Google Scholar], [Publisher
[22] M.R. Farahani, J. Chem. Acta., 2013, 2, 22-25. [Google Scholar], [Publisher
[23] M.R. Farahani, W. Gao, J. Chem. Pharmaceutical Research, 2015, 7, 535-539. [Pdf], [Google Scholar], [Publisher
[24] M.R. Farahani, World Appl. Sci. J., 2012, 20, 1248-1251. [crossref], [Google Scholar], [Publisher
[25] M.R. Farahani, Acta Chim. Slov., 2012, 59, 965-968. [Pdf], [Google Scholar], [Publisher
[26] W. Gao, M.R. Farahani, J. Nanotech., 2016, 2016, 1-6. [crossref], [Google Scholar], [Publisher
[27] I. Gutman, N. Trinajstić, Chem. Phys. Let., 1972, 17, 535-538. [crossref], [Google Scholar], [Publisher
[28] S. Hussain, F. Afzal, D. Afzal, M. Farahani, M. Cancan, S. Ediz, Eurasian Chem. Commun., 2021, 3, 180-186. [crossref], [Google Scholar], [Publisher
[29] M. Imran, S.A. Bokhary, S. Manzoor, M.K. Siddiqui, Eurasian Chem. Communm., 2020, 2, 680-687. [crossref], [Google Scholar], [Publisher
[30] S.M. Kang, W. Nazeer, W. Gao, D. Afzal, S.N. Gillani, Open Chem., 2018, 16, 201-213. [crossref], [Google Scholar], [Publisher
[31] A.J.M. Khalaf, S. Hussain, D. Afzal, F. Afzal, A. Maqbool, J. Dis. Math. Sci. Cryp., 2020, 23, 1217-1237. [crossref], [Google Scholar], [Publisher]   
[32] M. Randić, J. American Chem. Soc., 1975, 97, 6609-6615. [crossref], [Google Scholar], [Publisher]   
[33] D. Y. Shin, S. Hussain, F. Afzal, C. Park, D. Afzal, M.R. Farahani, Front. Chem., 2021, 8, 613873-613877. [crossref], [Google Scholar], [Publisher]