Web of Science (Emerging Sources Citation Index), ISC

Document Type : Original Research Article

Authors

1 School of Chemical Engineering, Iran University of Science and Technology, Tehran 16765-163, Iran

2 Materials and Nuclear Fuel Research School, Atomic Energy Organization, , Tehran 11365-8486, Iran

10.22034/ecc.2022.314990.1266

Abstract

In this study, a dynamic and equilibrium modeling of water distillation process for 18O isotope separation with multi-component distillation approach was studied. The mathematical model of this process was derived in order to obtain the equilibrium concentrations using isotopic exchange reactions through statistical methods based on stochastic exchanges and probability of molecular collisions. In this modeling, to calculate the liquid-vapor equilibriums, the separation factor (α) or volatility was considered as a function of column temperature. Then equations of this model were solved by numerical techniques in Matlab programming and distributions of isotopic water components were obtained in the distillation column under total reflux conditions. The simulation results showed that the separation factor has a significant effect on the 18O isotope separation as the H-labeled light components increased in the condenser above the column; the HD and D-labeled heavy components increased in the boiler due to the difference of the separation factor. Then experimental results of 18O in the condenser above the column and the reboiler from a semi-industrial plant were compared with the simulation results, which it showed a good conformity between the modeling and pilot results.

Graphical Abstract

Process modeling of 18o isotope separation using stochastic exchanges of isotopic components in a packed distillation column

Keywords

Main Subjects

[1] P. De Groot, Elsevier, Handbook of Stable Isotope Analytical Techniques Vol II Amsterdam, 2008, 1025–1032. [Pdf], [Google Scholar], [Publisher]
[2] Rotering, K. Franke, J. Zessin, P. Brust, F. Füchtner, S. Fischer, J. Steinbach, Appl. Radiat. Isot., 2015, 101, 44–52. [crossref], [Google Scholar], [Publisher]
[3] Schwartz, M. Hayer, B.A. Hungate, B.J. Koch, T.A. McHugh, W. Mercurio, E.M. Morrissey, K. Soldanova, Curr. Opin. Biotechnol., 2016, 41, 14–18. [crossref], [Google Scholar], [Publisher]
[4] A. Van Hook, Isotope separation, Kluwer Academic Publishers, Dordrecht, 2003, 177–211. [crossref], [Publisher]
[5] Horita, K. Rozanski, S. Cohen, Isotopes Environ. Health Stud., 2008, 44, 23–49. [crossref], [Google Scholar], [Publisher]
[6] London, Separation of Isotopes, George Newnes Limited, London, 1961.
[7] G. Thode, S.R. Smith, F.O. Walking, Canadian Journal of Research, 1944, 22b, 127–136. [crossref], [Google Scholar], [Publisher]
[8] Szapiro, F. Steckel, Trans. Faraday Soc., 1967, 63, 883-894. [crossref], [Google Scholar], [Publisher]
[9] Matsunaga, A. Nagashima, I.J.T., 1987, 8, 681–694. [crossref], [Google Scholar], [Publisher]
[10] I. Dostrovsky, E.D. Hughes, D.R. Llewellyn, Nature, 1948, 161, 858-859. [crossref], [Google Scholar], [Publisher]  
[11] D. Wolf, H. Cohen, Can. J. Chem. Eng., 1972, 50, 621–627. [crossref], [Google Scholar], [Publisher]  
[12] Z. Fraenkel, A. Raviv, W. Klein, Chem. Eng. Sci., 1963, 18, 697-709. [crossref], [Google Scholar], [Publisher]  
[13] Y.H. Gao, Z.H. Xu, Z.J. Yu, W.Y. Fei, CIESC J., 2014, 65, 213–219. [Google Scholar]
[14] Y.Y. Jiang, Y.Y. Chen, C.J. Qin, Y. Liu, H.S. Gu, J. Isot., 2011, 102–105. [crossref]
[15] Y.H. Gao, Z.H. Xu, K. Wu, Z. Yu, W.Y. Fei, Chinese J. Chem. Eng., 2016, 24, 979–988. [crossref], [Google Scholar], [Publisher]
[16] B.M. Andreev, E.P. Magomedbekov, A.A. Raitman, A.Y. Pozenkevich, Sakharovsky, A.V. Khoroshilov, Elsevier, Amsterdam, 2007. [Google Scholar], [Publisher]
[17] G.S. Kell, J. Phys. Chem. Ref. Data., 1977, 6, 1109-1131. [crossref], [Google Scholar], [Publisher]
[18] D. Palmer, A.R. Fernandez-Prini, A.H. Harvey, steam and hydrothermal solutions, 2004. [Google Scholar], [Publisher]
[19] W.A. Van Hook, J. Phys. Chem., 1968, 72, 1234-1243. [crossref], [Google Scholar], [Publisher]
[20] R. TaylorR. Krishna, Multicomponent Mass Transfer, Wiley, New York, 1993, 395-417. [Pdf], [Google Scholar], [Publisher]
[21] R.W. Rousseau, Handbook of Separation Process Technology, New York: J. Wiley, 1987, 70-90. [Pdf], [Google Scholar], [Publisher]
[22] G. Jancso, W.A. Van Hook, Condensed phase isotope effects, Chemical Reviews, 1974, 689–750. [crossref], [Google Scholar], [Publisher]
[23] R. Hanson, S. Green, Introduction to Molecular Thermodynamics, University Science Books, 2008, 1-17. [Pdf], [Google Scholar], [Publisher]
[24] S. Dilfanian, Ph.D. Thesis, University of Aston in Birmingham, 1978, 56-65. [Google Scholar], [Publisher]