Web of Science (Emerging Sources Citation Index), Scopus, ISC

Document Type : Original Research Article

Authors

1 University of Baghdad, Market Researches and Consumer Protection Canter, Baghdad, Iraq

2 Mustansiriyah University, College of Science, Biology Department, Baghdad, Iraq

Abstract

This study aims to find the best-synthesized factors of silver nanoparticles (Silver-NPs) utilizing a Chara sp. algal extract and evaluate their antibacterial properties against several isolated pathogenic microorganisms, the pure algal extract was made from dried algal biomass, and then was added to 1 mM AgNO3, in which the color shift was seen and recorded using an ultraviolet (UV)-vis spectrophotometer. EDX was used to examine the crystal structure. The growth inhibition for isolated bacteria was used to assess the antibacterial effectiveness. The color changes to brown. The formation of silver nanoparticles by the extract of the green algae at 2 minutes demonstrates the synthesis of silver nanoparticles by the extract of the green algae. The surface Plasmon resonance band, which was discovered using a UV-vis spectrophotometer, was centered at 440 nm. SEM images revealed spherical and semi-spherical nanoparticles with significant agglomeration, while the energy-dispersive X-ray images confirmed silver’s elemental components produced at 3 keV. With some exceptions, silver nanoparticles demonstrate the high inhibitory activity against all bacteria and fungi examined. The manufacture of silver nanoparticles using Chara sp. demonstrates a fast and environmentally benign silver ion reduction technique. As a result, the current study reveals that algae-mediated Green produced silver nanoparticles have a high antibacterial activity, indicating that they could be developed as a revolutionary therapy for human welfare in biomedical applications in the near future.

Graphical Abstract

Algae extracts as reduction agents for biosynthesis of silver nanoparticles for alternative medicinal compounds

Keywords

Main Subjects

1] C. Tanase, L. Berta, N.A.  Coman, I.  Rosca, A. Man, F. Toma, A.  Mocan, L. Jakab-Farkas, D. Biro, A. Mare, J. Antioxidants, 2019, 8, 459. [Crossref], [Google Scholar], [Publisher]
[2] S. Behboodi, F. Baghbani-Arani, S. Abdalan, S. A. Shandiz, J. Biol. Trace Elem. Res, 2019, 187, 392–402. [Crossref], [Google Scholar], [Publisher]
[3] K. Espoir, E.K. Kambale, C.I. Nkanga, B.P.I. Mutonkole, A.M. Bapolisi, D.O.  Tassa, J.M.I. Liesse, R.W.M. Krause, P.B. Memvangaa, J. Heliyon. 2020, 6, e04493. [Crossref], [Google Scholar], [Publisher]
[4] J.K. Patra, K.H. Baek, J. Nanomater., 2014, 2014, Article ID 417305. [Crossref], [Google Scholar], [Publisher]
[5] S.A. Dahoumane, M. Mechouet, K. Wijesekera, C.D.M. Filipe, C. Sicard, D.A. Bazylinski, C. Jeffryes, J. Green Chem., 2017, 19, 552-587. [Crossref], [Google Scholar], [Publisher]
[6] Y. Li, X. Tang, W. Song, L. Zhu, X. Liu, X. Yan, C. Jin, Q. Ren, IET Nanobiotechnol., 2015, 9, 19-26. [Crossref], [Google Scholar], [Publisher]
[7] R. Félix, A.M. Carmona, C. Félix, S.C. Novais, M.F.L. Lemos, J. Appl. Sci., 2020, 10, 1-19. [Crossref], [Google Scholar], [Publisher]
[8] S. Rajeshkumar, C. MALARKODI, V. Kumar, Asian J. Pharm. Clin. Res., 2017, 10, 190-193. [Crossref], [Google Scholar], [Publisher]
[9] E. Urnukhsaikhan, B.E. Bold, A. Gunbileg, N. Sukhbaatar, T. Mishig-Ochir, J. Sci. Rep., 2021, 11, 21047. [Crossref], [Google Scholar], [Publisher]
[10] N. Sharma, G. Bhatt, P. Kothiyal, J. Pharm. Biol. Res., 2015, 3, 13-27. [Crossref], [Google Scholar], [Publisher]
[11] P.A. Khanaqa, K.H. Karim, V. Thiel, J. Facies, 2013, 59, 653-662. [Crossref], [Google Scholar], [Publisher]
[12] Z. Shah, S.L. Badshah, A. Iqbal, Z. Shah, A. Emwas, M.Z. Jaremko, J. Chem. Biol. Technol. Agric., 2022, 9, 1-11. [Crossref], [Google Scholar], [Publisher]
[13] A.A. Saber, A. Ballot, S.C. Schneider, M. Cantonati, Bot. Lett., 2018, 165, 77-89. [Crossref], [Google Scholar], [Publisher].
[14] A. Mahajan, A. Arya, T.S. Chundawat, Int. J. Rapid Commun. Synth. Org. Chem., 2019, 49, 1926-1937. [Crossref], [Google Scholar], [Publisher]
[15] H. Tian, X. Zhou, C. Chen, Y. He, H. Yu, X.Zheng, Korean J. Food Sci. Anim. Resour., 2017, 37, 847-854. [Crossref], [Google Scholar], [Publisher]
[16] Z. Fatima, S. Quazi, Eur. J. Biol. Res., 2021, 11, 381-391. [Crossref], [Google Scholar], [Publisher]
[17] S.S. Shankar, A. Ahmad, M. Sastry, Biotechnol. Prog., 2003, 19, 1627-1631. [Crossref], [Google Scholar], [Publisher]
[18] A.A. Pebdani, S. Dadfarnia, A.M. Haji Shabani, S. Khodadoust, M.S.Talebianpoor, J. Sep. Sci., 2018, 41, 509-517. [Crossref], [Google Scholar],[Publisher]
[19] J. An, M. Zhang, S. Wang, J. Tang, J. LWT-Food Sci. Technol., 2008, 41, 1100-1107. [Crossref], [Google Scholar], [Publisher]
[20] L. Motevalizadeh, Z. Heidary, M. Abrishami, J. Bull. Mater. Sci., 2014, 37, 397-405. [Crossref], [Google Scholar], [Publisher]
[21] M. Hasana, I. Ullah, H. Zulfiqar, K. Naeem, A. Iqbal, H. Gul, M. Ashfaq, N. Mahmood, J. Mater. Today Chem., 2018, 8, 13-28. [Crossref], [Google Scholar], [Publisher]
[22] R.A. Hamouda, M.H. Hussein, R.A. Abo-elmagd, S.S. Bawazir, J. Scientific Reports, 2019, 9, 1-17. [Crossref], [Google Scholar], [Publisher]
[23] M.S. Bereksi, H. Hassaïne, C. Bekhechi, D.E. Abdelouahid, Pharmacognsy Journal, 2018, 10, 507-512. [Crossref], [Google Scholar], [Publisher]
[24] W.J. Aziz, H.A. Jassim, J. Am. Nanosci., 2018, 4, 21-25. [Crossref], [Google Scholar], [Publisher]