Document Type : Original Research Article


Department of Chemistry, College of Arts and Science, University of Benghazi, Al kufra, Libya


Alkaline earth metal oxides (CaO–MgO) are employed as a heterogeneous catalyst in the manufacture of biodiesel from non-edible oils such as olive, sunflower, and corn. The purpose of this research is to examine the effect of temperatures on the catalytic conversion of biodiesel from waste cooking oil using CaO–MgO. The catalyst was used to investigate the temperatures effect on the trans-esterification reaction. The best circumstances were studied a methanol to oil ratio of 6:1 and temperatures of 30-60 °C. The temperatures of the reaction has a considerable influence on the trans-esterification reaction, with optimum biodiesel conversion occurring at 60 °C and a yield 99%, with R2 values larger than 0.70. CaO–MgO catalyst exhibited 99% yield and strong catalytic activity. According to the experimental results, the CaO–MgO heterogeneous catalyst can obtain biodiesel of high yields that are comparable to those cited in the citations.

Graphical Abstract

Trans-esterification of non-edible oil with a CaO-MgO heterogeneous catalyst to produce biodiesel


Main Subjects

[1] J.M. Encinar, J.F. Gonzalez, A. Rodriguez-Reinares, Ethanolysis of used frying oil. Biodiesel preparation and characterization, Fuel Process. Technol., ‎2007, 88, 513-522. [Crossref], [Google Scholar], [Publisher]
[2] C.K. Sembiring, S. Saka, Renewable hydrocarbon fuels from plant oils for diesel and gasoline, J. Japan Pet. Inst., 2019, 62, 157-172. [Crossref], [Google Scholar], [Publisher]
[3] V. Gilles, Utilisation des huiles végétales comme carburant des moteurs diesel, Oléagineux, 1983, 38, 497-502. [Google Scholar], [Publisher]
[4] P.A.L. Anawe, J.A. Folayan, Data on physico-chemical, performance, combustion and emission characteristics of Persea Americana Biodiesel and its blends on direct-injection, compression-ignition engines, Data Brief., 2018a, 21, 1533–1540. [Crossref], [Google Scholar], [Publisher]
[4] D. Darnoko, M. Cheryan, Continuous production of palm methyl esters, J. Am. Oil Chem. Soc., 2000, 77, 1269-1272. [Crossref], [Google Scholar], [Publisher]
[5] T.M. Barnard, N.E. Leadbeater, M.B. Boucher, L.M. Stencel, B.A. Wilhite, Continuous-Flow Preparation of Biodiesel Using Microwave Heating, Energy & Fuels, 2007, 21, 1777-1781. [Crossref], [Google Scholar], [Publisher]
[6] A. Bouaid, Y. Diaz, M. Martinez, J. Aracil, Pilot plant studies of biodiesel production using Brassica carinata as raw material Catalysis Today, 2005, 106, 193-196. [Crossref], [Google Scholar], [Publisher]
[7] J. Van Gerpen, B. Shanks, R. Pruszko, D. Clements, G. Knothe, Biodiesel Analytical Methods: August 2002--January 2004, National Renewable Energy Lab, 2004, 1617, 80401-3393. [Crossref], [Google Scholar], [Publisher]
[8] S. Bari, C.W. Yu, T.H. Lim, Performance deterioration and durability issues while running a diesel engine with crude palm oil, Proc. Inst. Mech. Eng. D., 2002, 216, 785–792. [Crossref], [Google Scholar], [Publisher]
[9] Y.Y. Wang, T.H. Đăng, B.H. Chen, D.J. Lee, Transesterification of triolein to biodiesel using sodium-loaded catalysts prepared from zeolites, Ind. Eng. Chem. Res., 2012, 51, 9959-9965. [Crossref], [Google Scholar], [Publisher]
[10] S. Luz Martinez, R. Romero, J.C. López, A. Romero, V. Sanchez Mendieta, R. Natividad, Preparation and characterization of CaO nanoparticles/NaX zeolite catalysts for the transesterification of sunflower oil, Ind. Eng. Chem. Res., 2011, 50, 2665-2670. [Crossref], [Google Scholar], [Publisher]
[11] K.G. Georgogianni, A.K. Katsoulidis, P.J. Pomonis, G. Manos, M.G. Kontominas, Transesterification of rapeseed oil for the production of biodiesel using homogeneous and heterogeneous catalysis, Fuel Process. Technol., 2009, 90, 1016-1022. [Crossref], [Google Scholar], [Publisher]
[12] A. Rezayan, M. Taghizadeh, Synthesis of magnetic mesoporous nanocrystalline KOH/ZSM-5-Fe3O4 for biodiesel production: Process optimization and kinetics study, Process Saf. Environ. Prot., 2018, 117, 711-721. [Crossref], [Google Scholar], [Publisher]
[13] M. Di Serio, R. Tesser, L. Pengmei, E. Santacesaria, Heterogeneous Catalysts for Biodiesel Production,  Energy & Fuels, 2008, 22, 207-217. [Crossref], [Google Scholar], [Publisher]
[14] A.A. Refaat, Different techniques for the production of biodiesel from waste vegetable oil, Int. J. Environ. Sci. Technol., 2010, 7, 183–213. [Crossref], [Google Scholar], [Publisher]
[15] G. Vicente, M. Martínez, J. Aracil, Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield, Bioresour. Technol., 2007, 98, 1724–1733. [Crossref], [Google Scholar], [Publisher]
[16] M. Di Serio, M. Cozzolino, M. Giordano, R. Tesser, P. Patrono, E. Santacesaria, From Homogeneous to Heterogeneous Catalysts in Biodiesel Production, Ind. Eng. Chem. Res., 2007, 46, 6379–6384. [Crossref], [Google Scholar], [Publisher]
[17] W. Suryaputra, I. Winata, N. Indraswati, S. Ismadji, Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production, Renew. Energy, 2013, 150, 795–799. [Crossref], [Google Scholar], [Publisher]
[18] A. Macario, G. Giordano, B. Onida, D. Cocina, A. Tagarelli, A.M. Giuffr`e, Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid–base catalyst, Appl. Catal. A Gen., 2010, 378, 160–168. [Crossref], [Google Scholar], [Publisher]
[19] M.A.J. Turki, S.H. Awad, S.K. Ibrahim, Synthesis and Characterization of New Demulsifier from Natural Polymer, Chem. Methodol., 2022, 6, 649-660.  [Crossref], [Pdf], [Publisher]
[20] P. Mahmoudi, A. Takdastan, S. Jorfi, G. Goudarzi, M. Roayaei Ardakani, A. Neisi, Diversity of Native Hydrocarbon Degrading Bacterial Strains and Their Potential in Bioremediation of Soil Polluted by Crude Oil in Khuzestan Province (A response Surface Methodology Approach), Chem. Methodol., 2022, 6, 146-156.  [Crossref], [Pdf], [Publisher]
[21] N.E. Hassan, M.I. Umer, Primary Treatment of Landfill Leachate Effects on Heavy Metal and Soil Chemical Properties in Kwashe Industrial Area in Duhok Province, Kurdistan Region of Iraq, J. Med. Chem. Sci., 2022, 5, 1-9.‎ [Crossref], [Google Scholar], [Publisher]‎
[22] M. Noormohammadi, S. Shamaei, Phytochemical Composition and the Evaluation of Antioxidant Activity of Methanolic Extract and Essential Oil of Satureja Rechingeri Extract and Essential Oil, J. Med. Chem. Sci., 2022, 5, 65-75. [Crossref], [Google Scholar], [Publisher]
[23] J. Mahmoud, O.A. Ghareeb, Y.H. Mahmood, The Role of Garlic Oil in Improving Disturbances in Blood Parameters Caused by Zinc Oxide Nanoparticles.  J. Med. Chem. Sci.,  2022, 5, 76-81.[Crossref], [Google Scholar], [Publisher]
[24] A. Gaeta-Bernardi, V. Parente, Organic municipal solid waste (MSW) as feedstock for biodiesel production: A financial feasibility analysis, Renew. Energy, 2016, 86, 1422–1432. [Crossref], [Google Scholar], [Publisher]
[25] A.S. Silitonga, H.H. Masjuki, H.C. Ong, T. Yusaf, F. Kusumo, T.M.I Mahlia, Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: A comparative study, Ind. Crops. Prod., 2016, 85, 274-286. [Crossref], [Google Scholar], [Publisher]
[26] J. Baradari BajeBaj, M. Nasri, F. Ghoshchi, H.R. Tohidimoghadam, H.R. Larijani, Chemical Study of Silica and Calcium in Rapeseed Dates, Chem. Methodol., 2022, 6, 801-812. [Crossref], [Pdf], [Publisher]
[27] S. Yan, H. Lu, B. Liang, Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production, Energy & Fuels, 2008, 22, 646-651.‎[Crossref], [Google Scholar], [Publisher]‎
[28] S. Meneghetti, M. Meneghetti, C. Wolf, E. Silva, G. Lima, L. De Lira Silva, T.M. Serra, F. Cauduro, L.G. de Oliveira, Biodiesel from Castor Oil:  A Comparison of Ethanolysis versus Methanolysis, Energ Fuel, 2006, 20, 2262–2265. ‎[Crossref], [Google Scholar], [Publisher]‎
[29] S.H. Teo, U. Rashid, S.T. Choong, Y.H. Taufiq-Yap, Heterogeneous calcium-based bimetallic oxide catalyzed transesterification of Elaeis guineensis derived triglycerides for biodiesel production, Energy Convers. Manag., 2017, 141, 20–27. ‎[Crossref], [Google Scholar], [Publisher]‎
[30] E. Li, Z.P. Xu, V. Rudolph, MgCoAl–LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel, Appl. Catal. B: Environ., 2009, 88, 42-49. ‎[Crossref], [Google Scholar], [Publisher]‎
[31] M. Kotwal, P.S. Niphadkar, S.S. Deshpande, V.V. Bokade, P.N. Joshi, Transesterification of sunflower oil catalyzed by flyash-based solid catalysts, Fuel, 2009, 88, 1773-1778. ‎[Crossref], [Google Scholar], [Publisher]‎
[32] X. Zhao, F. Qi, C. Yuan, W. Du, D. Liu, Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization, Renew. Sust. Energ. Rev., 2015, 44, 182-197. ‎[Crossref], [Google Scholar], [Publisher]‎
‎[33]‎ Y. Liu, X. Meng, L. Sun, K. Pei, L. Chen, S. Zhang, M. Hu, Protective effects of hydroxy-α-sanshool from the pericarp of Zanthoxylum bungeanum Maxim. On D-galactose/AlCl3-induced Alzheimer's disease-like mice via Nrf2/HO-1 signaling pathways, Eur. J. Pharmacol., 2022, ‎‎914, 174691. [Crossref], [Google Scholar], [Publisher]